Evaluate
5t\left(7-2t\right)
Expand
35t-10t^{2}
Share
Copied to clipboard
2t-7-\left(10t^{2}-35t+2t-7\right)
Apply the distributive property by multiplying each term of 5t+1 by each term of 2t-7.
2t-7-\left(10t^{2}-33t-7\right)
Combine -35t and 2t to get -33t.
2t-7-10t^{2}-\left(-33t\right)-\left(-7\right)
To find the opposite of 10t^{2}-33t-7, find the opposite of each term.
2t-7-10t^{2}+33t-\left(-7\right)
The opposite of -33t is 33t.
2t-7-10t^{2}+33t+7
The opposite of -7 is 7.
35t-7-10t^{2}+7
Combine 2t and 33t to get 35t.
35t-10t^{2}
Add -7 and 7 to get 0.
2t-7-\left(10t^{2}-35t+2t-7\right)
Apply the distributive property by multiplying each term of 5t+1 by each term of 2t-7.
2t-7-\left(10t^{2}-33t-7\right)
Combine -35t and 2t to get -33t.
2t-7-10t^{2}-\left(-33t\right)-\left(-7\right)
To find the opposite of 10t^{2}-33t-7, find the opposite of each term.
2t-7-10t^{2}+33t-\left(-7\right)
The opposite of -33t is 33t.
2t-7-10t^{2}+33t+7
The opposite of -7 is 7.
35t-7-10t^{2}+7
Combine 2t and 33t to get 35t.
35t-10t^{2}
Add -7 and 7 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}