Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

2t^{2}-7t+3=1
Use the distributive property to multiply 2t-1 by t-3 and combine like terms.
2t^{2}-7t+3-1=0
Subtract 1 from both sides.
2t^{2}-7t+2=0
Subtract 1 from 3 to get 2.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 2}}{2\times 2}
Square -7.
t=\frac{-\left(-7\right)±\sqrt{49-8\times 2}}{2\times 2}
Multiply -4 times 2.
t=\frac{-\left(-7\right)±\sqrt{49-16}}{2\times 2}
Multiply -8 times 2.
t=\frac{-\left(-7\right)±\sqrt{33}}{2\times 2}
Add 49 to -16.
t=\frac{7±\sqrt{33}}{2\times 2}
The opposite of -7 is 7.
t=\frac{7±\sqrt{33}}{4}
Multiply 2 times 2.
t=\frac{\sqrt{33}+7}{4}
Now solve the equation t=\frac{7±\sqrt{33}}{4} when ± is plus. Add 7 to \sqrt{33}.
t=\frac{7-\sqrt{33}}{4}
Now solve the equation t=\frac{7±\sqrt{33}}{4} when ± is minus. Subtract \sqrt{33} from 7.
t=\frac{\sqrt{33}+7}{4} t=\frac{7-\sqrt{33}}{4}
The equation is now solved.
2t^{2}-7t+3=1
Use the distributive property to multiply 2t-1 by t-3 and combine like terms.
2t^{2}-7t=1-3
Subtract 3 from both sides.
2t^{2}-7t=-2
Subtract 3 from 1 to get -2.
\frac{2t^{2}-7t}{2}=-\frac{2}{2}
Divide both sides by 2.
t^{2}-\frac{7}{2}t=-\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}-\frac{7}{2}t=-1
Divide -2 by 2.
t^{2}-\frac{7}{2}t+\left(-\frac{7}{4}\right)^{2}=-1+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{7}{2}t+\frac{49}{16}=-1+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{7}{2}t+\frac{49}{16}=\frac{33}{16}
Add -1 to \frac{49}{16}.
\left(t-\frac{7}{4}\right)^{2}=\frac{33}{16}
Factor t^{2}-\frac{7}{2}t+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
t-\frac{7}{4}=\frac{\sqrt{33}}{4} t-\frac{7}{4}=-\frac{\sqrt{33}}{4}
Simplify.
t=\frac{\sqrt{33}+7}{4} t=\frac{7-\sqrt{33}}{4}
Add \frac{7}{4} to both sides of the equation.