Evaluate
6t^{3}+2t^{2}+2t+1
Differentiate w.r.t. t
18t^{2}+4t+2
Share
Copied to clipboard
6t^{3}-3t^{2}+1+5t^{2}+2t
Combine 2t^{3} and 4t^{3} to get 6t^{3}.
6t^{3}+2t^{2}+1+2t
Combine -3t^{2} and 5t^{2} to get 2t^{2}.
\frac{\mathrm{d}}{\mathrm{d}t}(6t^{3}-3t^{2}+1+5t^{2}+2t)
Combine 2t^{3} and 4t^{3} to get 6t^{3}.
\frac{\mathrm{d}}{\mathrm{d}t}(6t^{3}+2t^{2}+1+2t)
Combine -3t^{2} and 5t^{2} to get 2t^{2}.
3\times 6t^{3-1}+2\times 2t^{2-1}+2t^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
18t^{3-1}+2\times 2t^{2-1}+2t^{1-1}
Multiply 3 times 6.
18t^{2}+2\times 2t^{2-1}+2t^{1-1}
Subtract 1 from 3.
18t^{2}+4t^{2-1}+2t^{1-1}
Multiply 2 times 2.
18t^{2}+4t^{1}+2t^{1-1}
Subtract 1 from 2.
18t^{2}+4t^{1}+2t^{0}
Subtract 1 from 1.
18t^{2}+4t+2t^{0}
For any term t, t^{1}=t.
18t^{2}+4t+2\times 1
For any term t except 0, t^{0}=1.
18t^{2}+4t+2
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}