Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. r
Tick mark Image

Similar Problems from Web Search

Share

\left(2r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Expand \left(2r^{2}\right)^{2}.
2^{2}r^{4}-\left(\sqrt{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4r^{4}-\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4r^{4}-5
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}r}(\left(2r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2})
Consider \left(2r^{2}+\sqrt{5}\right)\left(2r^{2}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}r}(2^{2}\left(r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2})
Expand \left(2r^{2}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}r}(2^{2}r^{4}-\left(\sqrt{5}\right)^{2})
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}r}(4r^{4}-\left(\sqrt{5}\right)^{2})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}r}(4r^{4}-5)
The square of \sqrt{5} is 5.
4\times 4r^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
16r^{4-1}
Multiply 4 times 4.
16r^{3}
Subtract 1 from 4.