Evaluate
4r^{4}-5
Differentiate w.r.t. r
16r^{3}
Share
Copied to clipboard
\left(2r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2}
Expand \left(2r^{2}\right)^{2}.
2^{2}r^{4}-\left(\sqrt{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4r^{4}-\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4r^{4}-5
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}r}(\left(2r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2})
Consider \left(2r^{2}+\sqrt{5}\right)\left(2r^{2}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}r}(2^{2}\left(r^{2}\right)^{2}-\left(\sqrt{5}\right)^{2})
Expand \left(2r^{2}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}r}(2^{2}r^{4}-\left(\sqrt{5}\right)^{2})
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}r}(4r^{4}-\left(\sqrt{5}\right)^{2})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}r}(4r^{4}-5)
The square of \sqrt{5} is 5.
4\times 4r^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
16r^{4-1}
Multiply 4 times 4.
16r^{3}
Subtract 1 from 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}