Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4p^{2}-12p+9-\left(p-4\right)\left(p+4\right)-2p\left(p+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2p-3\right)^{2}.
4p^{2}-12p+9-\left(p^{2}-16\right)-2p\left(p+2\right)
Consider \left(p-4\right)\left(p+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
4p^{2}-12p+9-p^{2}+16-2p\left(p+2\right)
To find the opposite of p^{2}-16, find the opposite of each term.
3p^{2}-12p+9+16-2p\left(p+2\right)
Combine 4p^{2} and -p^{2} to get 3p^{2}.
3p^{2}-12p+25-2p\left(p+2\right)
Add 9 and 16 to get 25.
3p^{2}-12p+25-2p^{2}-4p
Use the distributive property to multiply -2p by p+2.
p^{2}-12p+25-4p
Combine 3p^{2} and -2p^{2} to get p^{2}.
p^{2}-16p+25
Combine -12p and -4p to get -16p.
4p^{2}-12p+9-\left(p-4\right)\left(p+4\right)-2p\left(p+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2p-3\right)^{2}.
4p^{2}-12p+9-\left(p^{2}-16\right)-2p\left(p+2\right)
Consider \left(p-4\right)\left(p+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
4p^{2}-12p+9-p^{2}+16-2p\left(p+2\right)
To find the opposite of p^{2}-16, find the opposite of each term.
3p^{2}-12p+9+16-2p\left(p+2\right)
Combine 4p^{2} and -p^{2} to get 3p^{2}.
3p^{2}-12p+25-2p\left(p+2\right)
Add 9 and 16 to get 25.
3p^{2}-12p+25-2p^{2}-4p
Use the distributive property to multiply -2p by p+2.
p^{2}-12p+25-4p
Combine 3p^{2} and -2p^{2} to get p^{2}.
p^{2}-16p+25
Combine -12p and -4p to get -16p.