Evaluate
4n^{2}-\frac{3n}{2}+\frac{1}{8}
Expand
4n^{2}-\frac{3n}{2}+\frac{1}{8}
Share
Copied to clipboard
4n^{2}+2n\left(-\frac{1}{4}\right)-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Apply the distributive property by multiplying each term of 2n-\frac{1}{2} by each term of 2n-\frac{1}{4}.
4n^{2}+\frac{2\left(-1\right)}{4}n-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Express 2\left(-\frac{1}{4}\right) as a single fraction.
4n^{2}+\frac{-2}{4}n-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Multiply 2 and -1 to get -2.
4n^{2}-\frac{1}{2}n-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
4n^{2}-\frac{1}{2}n-n-\frac{1}{2}\left(-\frac{1}{4}\right)
Cancel out 2 and 2.
4n^{2}-\frac{3}{2}n-\frac{1}{2}\left(-\frac{1}{4}\right)
Combine -\frac{1}{2}n and -n to get -\frac{3}{2}n.
4n^{2}-\frac{3}{2}n+\frac{-\left(-1\right)}{2\times 4}
Multiply -\frac{1}{2} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
4n^{2}-\frac{3}{2}n+\frac{1}{8}
Do the multiplications in the fraction \frac{-\left(-1\right)}{2\times 4}.
4n^{2}+2n\left(-\frac{1}{4}\right)-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Apply the distributive property by multiplying each term of 2n-\frac{1}{2} by each term of 2n-\frac{1}{4}.
4n^{2}+\frac{2\left(-1\right)}{4}n-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Express 2\left(-\frac{1}{4}\right) as a single fraction.
4n^{2}+\frac{-2}{4}n-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Multiply 2 and -1 to get -2.
4n^{2}-\frac{1}{2}n-\frac{1}{2}\times 2n-\frac{1}{2}\left(-\frac{1}{4}\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
4n^{2}-\frac{1}{2}n-n-\frac{1}{2}\left(-\frac{1}{4}\right)
Cancel out 2 and 2.
4n^{2}-\frac{3}{2}n-\frac{1}{2}\left(-\frac{1}{4}\right)
Combine -\frac{1}{2}n and -n to get -\frac{3}{2}n.
4n^{2}-\frac{3}{2}n+\frac{-\left(-1\right)}{2\times 4}
Multiply -\frac{1}{2} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
4n^{2}-\frac{3}{2}n+\frac{1}{8}
Do the multiplications in the fraction \frac{-\left(-1\right)}{2\times 4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}