Evaluate
3m\left(m-6n\right)
Expand
3m^{2}-18mn
Share
Copied to clipboard
4m^{2}-12mn+9n^{2}-\left(m+3n\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-3n\right)^{2}.
4m^{2}-12mn+9n^{2}-\left(m^{2}+6mn+9n^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+3n\right)^{2}.
4m^{2}-12mn+9n^{2}-m^{2}-6mn-9n^{2}
To find the opposite of m^{2}+6mn+9n^{2}, find the opposite of each term.
3m^{2}-12mn+9n^{2}-6mn-9n^{2}
Combine 4m^{2} and -m^{2} to get 3m^{2}.
3m^{2}-18mn+9n^{2}-9n^{2}
Combine -12mn and -6mn to get -18mn.
3m^{2}-18mn
Combine 9n^{2} and -9n^{2} to get 0.
4m^{2}-12mn+9n^{2}-\left(m+3n\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-3n\right)^{2}.
4m^{2}-12mn+9n^{2}-\left(m^{2}+6mn+9n^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+3n\right)^{2}.
4m^{2}-12mn+9n^{2}-m^{2}-6mn-9n^{2}
To find the opposite of m^{2}+6mn+9n^{2}, find the opposite of each term.
3m^{2}-12mn+9n^{2}-6mn-9n^{2}
Combine 4m^{2} and -m^{2} to get 3m^{2}.
3m^{2}-18mn+9n^{2}-9n^{2}
Combine -12mn and -6mn to get -18mn.
3m^{2}-18mn
Combine 9n^{2} and -9n^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}