Solve for m
m<\frac{5}{4}
Share
Copied to clipboard
4m^{2}-4m+1-4\left(m^{2}-1\right)>0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-1\right)^{2}.
4m^{2}-4m+1-4m^{2}+4>0
Use the distributive property to multiply -4 by m^{2}-1.
-4m+1+4>0
Combine 4m^{2} and -4m^{2} to get 0.
-4m+5>0
Add 1 and 4 to get 5.
-4m>-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
m<\frac{-5}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
m<\frac{5}{4}
Fraction \frac{-5}{-4} can be simplified to \frac{5}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}