Evaluate
-y^{2}-2m^{2}
Expand
-y^{2}-2m^{2}
Graph
Share
Copied to clipboard
2m^{2}-4my-\left(2m-y\right)^{2}
Use the distributive property to multiply 2m by m-2y.
2m^{2}-4my-\left(4m^{2}-4my+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-y\right)^{2}.
2m^{2}-4my-4m^{2}+4my-y^{2}
To find the opposite of 4m^{2}-4my+y^{2}, find the opposite of each term.
-2m^{2}-4my+4my-y^{2}
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}-y^{2}
Combine -4my and 4my to get 0.
2m^{2}-4my-\left(2m-y\right)^{2}
Use the distributive property to multiply 2m by m-2y.
2m^{2}-4my-\left(4m^{2}-4my+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-y\right)^{2}.
2m^{2}-4my-4m^{2}+4my-y^{2}
To find the opposite of 4m^{2}-4my+y^{2}, find the opposite of each term.
-2m^{2}-4my+4my-y^{2}
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}-y^{2}
Combine -4my and 4my to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}