Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\left(2m^{3}\right)^{0}\times \frac{1}{3m^{6}}
Use the rules of exponents to simplify the expression.
2^{0}\left(m^{3}\right)^{0}\times \frac{1}{3}\times \frac{1}{m^{6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{0}\times \frac{1}{3}\left(m^{3}\right)^{0}\times \frac{1}{m^{6}}
Use the Commutative Property of Multiplication.
2^{0}\times \frac{1}{3}m^{0}m^{6\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{0}\times \frac{1}{3}m^{0}m^{-6}
Multiply 6 times -1.
2^{0}\times \frac{1}{3}m^{-6}
To multiply powers of the same base, add their exponents.
\frac{1}{3}m^{-6}
Raise 2 to the power 0.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times \left(3m^{6}\right)^{-1})
Calculate 2m^{3} to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times 3^{-1}\left(m^{6}\right)^{-1})
Expand \left(3m^{6}\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times 3^{-1}m^{-6})
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times \frac{1}{3}m^{-6})
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{1}{3}m^{-6})
Multiply 1 and \frac{1}{3} to get \frac{1}{3}.
-6\times \frac{1}{3}m^{-6-1}
The derivative of ax^{n} is nax^{n-1}.
-2m^{-6-1}
Multiply -6 times \frac{1}{3}.
-2m^{-7}
Subtract 1 from -6.