Evaluate
\frac{1}{3m^{6}}
Differentiate w.r.t. m
-\frac{2}{m^{7}}
Share
Copied to clipboard
\left(2m^{3}\right)^{0}\times \frac{1}{3m^{6}}
Use the rules of exponents to simplify the expression.
2^{0}\left(m^{3}\right)^{0}\times \frac{1}{3}\times \frac{1}{m^{6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{0}\times \frac{1}{3}\left(m^{3}\right)^{0}\times \frac{1}{m^{6}}
Use the Commutative Property of Multiplication.
2^{0}\times \frac{1}{3}m^{0}m^{6\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{0}\times \frac{1}{3}m^{0}m^{-6}
Multiply 6 times -1.
2^{0}\times \frac{1}{3}m^{-6}
To multiply powers of the same base, add their exponents.
\frac{1}{3}m^{-6}
Raise 2 to the power 0.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times \left(3m^{6}\right)^{-1})
Calculate 2m^{3} to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times 3^{-1}\left(m^{6}\right)^{-1})
Expand \left(3m^{6}\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times 3^{-1}m^{-6})
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{\mathrm{d}}{\mathrm{d}m}(1\times \frac{1}{3}m^{-6})
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{1}{3}m^{-6})
Multiply 1 and \frac{1}{3} to get \frac{1}{3}.
-6\times \frac{1}{3}m^{-6-1}
The derivative of ax^{n} is nax^{n-1}.
-2m^{-6-1}
Multiply -6 times \frac{1}{3}.
-2m^{-7}
Subtract 1 from -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}