Evaluate
\frac{2}{3m}
Differentiate w.r.t. m
-\frac{2}{3m^{2}}
Share
Copied to clipboard
2^{1}\times \frac{1}{k}m^{1}\times \frac{1}{3}k^{1}m^{-2}
Use the rules of exponents to simplify the expression.
2^{1}\times \frac{1}{3}\times \frac{1}{k}k^{1}m^{1}m^{-2}
Use the Commutative Property of Multiplication.
2^{1}\times \frac{1}{3}k^{-1+1}m^{1-2}
To multiply powers of the same base, add their exponents.
2^{1}\times \frac{1}{3}k^{0}m^{1-2}
Add the exponents -1 and 1.
2^{1}\times \frac{1}{3}m^{1-2}
For any number a except 0, a^{0}=1.
2^{1}\times \frac{1}{3}\times \frac{1}{m}
Add the exponents 1 and -2.
2\times \frac{1}{3}\times \frac{1}{m}
Raise 3 to the power -1.
\frac{2}{3}\times \frac{1}{m}
Multiply 2 times \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}m}(2m\times 3^{-1}m^{-2})
Multiply k^{-1} and k to get 1.
\frac{\mathrm{d}}{\mathrm{d}m}(2m^{-1}\times 3^{-1})
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\frac{\mathrm{d}}{\mathrm{d}m}(2m^{-1}\times \frac{1}{3})
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{2}{3}m^{-1})
Multiply 2 and \frac{1}{3} to get \frac{2}{3}.
-\frac{2}{3}m^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{2}{3}m^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}