Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

2^{1}\times \frac{1}{k}m^{1}\times \frac{1}{3}k^{1}m^{-2}
Use the rules of exponents to simplify the expression.
2^{1}\times \frac{1}{3}\times \frac{1}{k}k^{1}m^{1}m^{-2}
Use the Commutative Property of Multiplication.
2^{1}\times \frac{1}{3}k^{-1+1}m^{1-2}
To multiply powers of the same base, add their exponents.
2^{1}\times \frac{1}{3}k^{0}m^{1-2}
Add the exponents -1 and 1.
2^{1}\times \frac{1}{3}m^{1-2}
For any number a except 0, a^{0}=1.
2^{1}\times \frac{1}{3}\times \frac{1}{m}
Add the exponents 1 and -2.
2\times \frac{1}{3}\times \frac{1}{m}
Raise 3 to the power -1.
\frac{2}{3}\times \frac{1}{m}
Multiply 2 times \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}m}(2m\times 3^{-1}m^{-2})
Multiply k^{-1} and k to get 1.
\frac{\mathrm{d}}{\mathrm{d}m}(2m^{-1}\times 3^{-1})
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\frac{\mathrm{d}}{\mathrm{d}m}(2m^{-1}\times \frac{1}{3})
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{2}{3}m^{-1})
Multiply 2 and \frac{1}{3} to get \frac{2}{3}.
-\frac{2}{3}m^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{2}{3}m^{-2}
Subtract 1 from -1.