Evaluate
k^{2}\left(4-k^{2}\right)
Expand
4k^{2}-k^{4}
Share
Copied to clipboard
2k\left(-k^{2}\right)+4k^{2}+k^{2}\left(-k^{2}\right)+2k^{3}
Use the distributive property to multiply 2k+k^{2} by -k^{2}+2k.
-2kk^{2}+4k^{2}+k^{2}\left(-1\right)k^{2}+2k^{3}
Multiply 2 and -1 to get -2.
-2k^{3}+4k^{2}+k^{2}\left(-1\right)k^{2}+2k^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-2k^{3}+4k^{2}+k^{4}\left(-1\right)+2k^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
4k^{2}+k^{4}\left(-1\right)
Combine -2k^{3} and 2k^{3} to get 0.
2k\left(-k^{2}\right)+4k^{2}+k^{2}\left(-k^{2}\right)+2k^{3}
Use the distributive property to multiply 2k+k^{2} by -k^{2}+2k.
-2kk^{2}+4k^{2}+k^{2}\left(-1\right)k^{2}+2k^{3}
Multiply 2 and -1 to get -2.
-2k^{3}+4k^{2}+k^{2}\left(-1\right)k^{2}+2k^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-2k^{3}+4k^{2}+k^{4}\left(-1\right)+2k^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
4k^{2}+k^{4}\left(-1\right)
Combine -2k^{3} and 2k^{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}