Solve for k
k = -\frac{67}{18} = -3\frac{13}{18} \approx -3.722222222
Share
Copied to clipboard
2k\times \frac{3}{4}+\frac{3}{4}+\left(3+k\right)\times 5+1-2k=0
Use the distributive property to multiply 2k+1 by \frac{3}{4}.
\frac{2\times 3}{4}k+\frac{3}{4}+\left(3+k\right)\times 5+1-2k=0
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}k+\frac{3}{4}+\left(3+k\right)\times 5+1-2k=0
Multiply 2 and 3 to get 6.
\frac{3}{2}k+\frac{3}{4}+\left(3+k\right)\times 5+1-2k=0
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}k+\frac{3}{4}+15+5k+1-2k=0
Use the distributive property to multiply 3+k by 5.
\frac{3}{2}k+\frac{3}{4}+\frac{60}{4}+5k+1-2k=0
Convert 15 to fraction \frac{60}{4}.
\frac{3}{2}k+\frac{3+60}{4}+5k+1-2k=0
Since \frac{3}{4} and \frac{60}{4} have the same denominator, add them by adding their numerators.
\frac{3}{2}k+\frac{63}{4}+5k+1-2k=0
Add 3 and 60 to get 63.
\frac{13}{2}k+\frac{63}{4}+1-2k=0
Combine \frac{3}{2}k and 5k to get \frac{13}{2}k.
\frac{13}{2}k+\frac{63}{4}+\frac{4}{4}-2k=0
Convert 1 to fraction \frac{4}{4}.
\frac{13}{2}k+\frac{63+4}{4}-2k=0
Since \frac{63}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{13}{2}k+\frac{67}{4}-2k=0
Add 63 and 4 to get 67.
\frac{9}{2}k+\frac{67}{4}=0
Combine \frac{13}{2}k and -2k to get \frac{9}{2}k.
\frac{9}{2}k=-\frac{67}{4}
Subtract \frac{67}{4} from both sides. Anything subtracted from zero gives its negation.
k=-\frac{67}{4}\times \frac{2}{9}
Multiply both sides by \frac{2}{9}, the reciprocal of \frac{9}{2}.
k=\frac{-67\times 2}{4\times 9}
Multiply -\frac{67}{4} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
k=\frac{-134}{36}
Do the multiplications in the fraction \frac{-67\times 2}{4\times 9}.
k=-\frac{67}{18}
Reduce the fraction \frac{-134}{36} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}