Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2d\times \frac{1}{2}d-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Apply the distributive property by multiplying each term of 2d-8 by each term of \frac{1}{2}d-4.
2d^{2}\times \frac{1}{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply d and d to get d^{2}.
d^{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Cancel out 2 and 2.
d^{2}-8d+\frac{-8}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply -8 and \frac{1}{2} to get \frac{-8}{2}.
d^{2}-8d-4d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Divide -8 by 2 to get -4.
d^{2}-12d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Combine -8d and -4d to get -12d.
d^{2}-12d+32-\left(3d\times \frac{1}{3}d+3d-6\times \frac{1}{3}d-6\right)
Apply the distributive property by multiplying each term of 3d-6 by each term of \frac{1}{3}d+1.
d^{2}-12d+32-\left(3d^{2}\times \frac{1}{3}+3d-6\times \frac{1}{3}d-6\right)
Multiply d and d to get d^{2}.
d^{2}-12d+32-\left(d^{2}+3d-6\times \frac{1}{3}d-6\right)
Cancel out 3 and 3.
d^{2}-12d+32-\left(d^{2}+3d+\frac{-6}{3}d-6\right)
Multiply -6 and \frac{1}{3} to get \frac{-6}{3}.
d^{2}-12d+32-\left(d^{2}+3d-2d-6\right)
Divide -6 by 3 to get -2.
d^{2}-12d+32-\left(d^{2}+d-6\right)
Combine 3d and -2d to get d.
d^{2}-12d+32-d^{2}-d-\left(-6\right)
To find the opposite of d^{2}+d-6, find the opposite of each term.
d^{2}-12d+32-d^{2}-d+6
The opposite of -6 is 6.
-12d+32-d+6
Combine d^{2} and -d^{2} to get 0.
-13d+32+6
Combine -12d and -d to get -13d.
-13d+38
Add 32 and 6 to get 38.
2d\times \frac{1}{2}d-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Apply the distributive property by multiplying each term of 2d-8 by each term of \frac{1}{2}d-4.
2d^{2}\times \frac{1}{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply d and d to get d^{2}.
d^{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Cancel out 2 and 2.
d^{2}-8d+\frac{-8}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply -8 and \frac{1}{2} to get \frac{-8}{2}.
d^{2}-8d-4d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Divide -8 by 2 to get -4.
d^{2}-12d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Combine -8d and -4d to get -12d.
d^{2}-12d+32-\left(3d\times \frac{1}{3}d+3d-6\times \frac{1}{3}d-6\right)
Apply the distributive property by multiplying each term of 3d-6 by each term of \frac{1}{3}d+1.
d^{2}-12d+32-\left(3d^{2}\times \frac{1}{3}+3d-6\times \frac{1}{3}d-6\right)
Multiply d and d to get d^{2}.
d^{2}-12d+32-\left(d^{2}+3d-6\times \frac{1}{3}d-6\right)
Cancel out 3 and 3.
d^{2}-12d+32-\left(d^{2}+3d+\frac{-6}{3}d-6\right)
Multiply -6 and \frac{1}{3} to get \frac{-6}{3}.
d^{2}-12d+32-\left(d^{2}+3d-2d-6\right)
Divide -6 by 3 to get -2.
d^{2}-12d+32-\left(d^{2}+d-6\right)
Combine 3d and -2d to get d.
d^{2}-12d+32-d^{2}-d-\left(-6\right)
To find the opposite of d^{2}+d-6, find the opposite of each term.
d^{2}-12d+32-d^{2}-d+6
The opposite of -6 is 6.
-12d+32-d+6
Combine d^{2} and -d^{2} to get 0.
-13d+32+6
Combine -12d and -d to get -13d.
-13d+38
Add 32 and 6 to get 38.