Evaluate
38-13d
Expand
38-13d
Share
Copied to clipboard
2d\times \frac{1}{2}d-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Apply the distributive property by multiplying each term of 2d-8 by each term of \frac{1}{2}d-4.
2d^{2}\times \frac{1}{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply d and d to get d^{2}.
d^{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Cancel out 2 and 2.
d^{2}-8d+\frac{-8}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply -8 and \frac{1}{2} to get \frac{-8}{2}.
d^{2}-8d-4d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Divide -8 by 2 to get -4.
d^{2}-12d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Combine -8d and -4d to get -12d.
d^{2}-12d+32-\left(3d\times \frac{1}{3}d+3d-6\times \frac{1}{3}d-6\right)
Apply the distributive property by multiplying each term of 3d-6 by each term of \frac{1}{3}d+1.
d^{2}-12d+32-\left(3d^{2}\times \frac{1}{3}+3d-6\times \frac{1}{3}d-6\right)
Multiply d and d to get d^{2}.
d^{2}-12d+32-\left(d^{2}+3d-6\times \frac{1}{3}d-6\right)
Cancel out 3 and 3.
d^{2}-12d+32-\left(d^{2}+3d+\frac{-6}{3}d-6\right)
Multiply -6 and \frac{1}{3} to get \frac{-6}{3}.
d^{2}-12d+32-\left(d^{2}+3d-2d-6\right)
Divide -6 by 3 to get -2.
d^{2}-12d+32-\left(d^{2}+d-6\right)
Combine 3d and -2d to get d.
d^{2}-12d+32-d^{2}-d-\left(-6\right)
To find the opposite of d^{2}+d-6, find the opposite of each term.
d^{2}-12d+32-d^{2}-d+6
The opposite of -6 is 6.
-12d+32-d+6
Combine d^{2} and -d^{2} to get 0.
-13d+32+6
Combine -12d and -d to get -13d.
-13d+38
Add 32 and 6 to get 38.
2d\times \frac{1}{2}d-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Apply the distributive property by multiplying each term of 2d-8 by each term of \frac{1}{2}d-4.
2d^{2}\times \frac{1}{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply d and d to get d^{2}.
d^{2}-8d-8\times \frac{1}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Cancel out 2 and 2.
d^{2}-8d+\frac{-8}{2}d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Multiply -8 and \frac{1}{2} to get \frac{-8}{2}.
d^{2}-8d-4d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Divide -8 by 2 to get -4.
d^{2}-12d+32-\left(3d-6\right)\left(\frac{1}{3}d+1\right)
Combine -8d and -4d to get -12d.
d^{2}-12d+32-\left(3d\times \frac{1}{3}d+3d-6\times \frac{1}{3}d-6\right)
Apply the distributive property by multiplying each term of 3d-6 by each term of \frac{1}{3}d+1.
d^{2}-12d+32-\left(3d^{2}\times \frac{1}{3}+3d-6\times \frac{1}{3}d-6\right)
Multiply d and d to get d^{2}.
d^{2}-12d+32-\left(d^{2}+3d-6\times \frac{1}{3}d-6\right)
Cancel out 3 and 3.
d^{2}-12d+32-\left(d^{2}+3d+\frac{-6}{3}d-6\right)
Multiply -6 and \frac{1}{3} to get \frac{-6}{3}.
d^{2}-12d+32-\left(d^{2}+3d-2d-6\right)
Divide -6 by 3 to get -2.
d^{2}-12d+32-\left(d^{2}+d-6\right)
Combine 3d and -2d to get d.
d^{2}-12d+32-d^{2}-d-\left(-6\right)
To find the opposite of d^{2}+d-6, find the opposite of each term.
d^{2}-12d+32-d^{2}-d+6
The opposite of -6 is 6.
-12d+32-d+6
Combine d^{2} and -d^{2} to get 0.
-13d+32+6
Combine -12d and -d to get -13d.
-13d+38
Add 32 and 6 to get 38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}