Evaluate
\frac{8b^{14}}{9c^{8}}
Expand
\frac{8b^{14}}{9c^{8}}
Share
Copied to clipboard
2^{3}\left(b^{2}\right)^{3}\left(c^{-4}\right)^{3}\times \left(3b^{-4}c^{-2}\right)^{-2}
Expand \left(2b^{2}c^{-4}\right)^{3}.
2^{3}b^{6}\left(c^{-4}\right)^{3}\times \left(3b^{-4}c^{-2}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
2^{3}b^{6}c^{-12}\times \left(3b^{-4}c^{-2}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
8b^{6}c^{-12}\times \left(3b^{-4}c^{-2}\right)^{-2}
Calculate 2 to the power of 3 and get 8.
8b^{6}c^{-12}\times 3^{-2}\left(b^{-4}\right)^{-2}\left(c^{-2}\right)^{-2}
Expand \left(3b^{-4}c^{-2}\right)^{-2}.
8b^{6}c^{-12}\times 3^{-2}b^{8}\left(c^{-2}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
8b^{6}c^{-12}\times 3^{-2}b^{8}c^{4}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
8b^{6}c^{-12}\times \frac{1}{9}b^{8}c^{4}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{8}{9}b^{6}c^{-12}b^{8}c^{4}
Multiply 8 and \frac{1}{9} to get \frac{8}{9}.
\frac{8}{9}b^{14}c^{-12}c^{4}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
\frac{8}{9}b^{14}c^{-8}
To multiply powers of the same base, add their exponents. Add -12 and 4 to get -8.
2^{3}\left(b^{2}\right)^{3}\left(c^{-4}\right)^{3}\times \left(3b^{-4}c^{-2}\right)^{-2}
Expand \left(2b^{2}c^{-4}\right)^{3}.
2^{3}b^{6}\left(c^{-4}\right)^{3}\times \left(3b^{-4}c^{-2}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
2^{3}b^{6}c^{-12}\times \left(3b^{-4}c^{-2}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
8b^{6}c^{-12}\times \left(3b^{-4}c^{-2}\right)^{-2}
Calculate 2 to the power of 3 and get 8.
8b^{6}c^{-12}\times 3^{-2}\left(b^{-4}\right)^{-2}\left(c^{-2}\right)^{-2}
Expand \left(3b^{-4}c^{-2}\right)^{-2}.
8b^{6}c^{-12}\times 3^{-2}b^{8}\left(c^{-2}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
8b^{6}c^{-12}\times 3^{-2}b^{8}c^{4}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
8b^{6}c^{-12}\times \frac{1}{9}b^{8}c^{4}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{8}{9}b^{6}c^{-12}b^{8}c^{4}
Multiply 8 and \frac{1}{9} to get \frac{8}{9}.
\frac{8}{9}b^{14}c^{-12}c^{4}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
\frac{8}{9}b^{14}c^{-8}
To multiply powers of the same base, add their exponents. Add -12 and 4 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}