( 2 a 5 + \{ 3 \cdot 02 \times ( 6 \cdot 125 \div 96 - 2746 ) \}
Evaluate
2a_{5}-\frac{131433}{8}
Differentiate w.r.t. a_5
2
Share
Copied to clipboard
2a_{5}+6\left(\frac{6\times 125}{96}-2746\right)
Multiply 3 and 2 to get 6.
2a_{5}+6\left(\frac{750}{96}-2746\right)
Multiply 6 and 125 to get 750.
2a_{5}+6\left(\frac{125}{16}-2746\right)
Reduce the fraction \frac{750}{96} to lowest terms by extracting and canceling out 6.
2a_{5}+6\left(\frac{125}{16}-\frac{43936}{16}\right)
Convert 2746 to fraction \frac{43936}{16}.
2a_{5}+6\times \frac{125-43936}{16}
Since \frac{125}{16} and \frac{43936}{16} have the same denominator, subtract them by subtracting their numerators.
2a_{5}+6\left(-\frac{43811}{16}\right)
Subtract 43936 from 125 to get -43811.
2a_{5}+\frac{6\left(-43811\right)}{16}
Express 6\left(-\frac{43811}{16}\right) as a single fraction.
2a_{5}+\frac{-262866}{16}
Multiply 6 and -43811 to get -262866.
2a_{5}+-\frac{131433}{8}
Reduce the fraction \frac{-262866}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}