Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{12+b-bx}{2x+1}\text{, }&x\neq -\frac{1}{2}\\a\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }b=-8\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{2ax+a+12}{1-x}\text{, }&x\neq 1\\b\in \mathrm{C}\text{, }&x=1\text{ and }a=-4\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{12+b-bx}{2x+1}\text{, }&x\neq -\frac{1}{2}\\a\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }b=-8\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{2ax+a+12}{1-x}\text{, }&x\neq 1\\b\in \mathrm{R}\text{, }&x=1\text{ and }a=-4\end{matrix}\right.
Graph
Share
Copied to clipboard
2ax-bx+a+b+12=0
Use the distributive property to multiply 2a-b by x.
2ax+a+b+12=bx
Add bx to both sides. Anything plus zero gives itself.
2ax+a+12=bx-b
Subtract b from both sides.
2ax+a=bx-b-12
Subtract 12 from both sides.
\left(2x+1\right)a=bx-b-12
Combine all terms containing a.
\frac{\left(2x+1\right)a}{2x+1}=\frac{bx-b-12}{2x+1}
Divide both sides by 2x+1.
a=\frac{bx-b-12}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
2ax-bx+a+b+12=0
Use the distributive property to multiply 2a-b by x.
-bx+a+b+12=-2ax
Subtract 2ax from both sides. Anything subtracted from zero gives its negation.
-bx+b+12=-2ax-a
Subtract a from both sides.
-bx+b=-2ax-a-12
Subtract 12 from both sides.
\left(-x+1\right)b=-2ax-a-12
Combine all terms containing b.
\left(1-x\right)b=-2ax-a-12
The equation is in standard form.
\frac{\left(1-x\right)b}{1-x}=\frac{-2ax-a-12}{1-x}
Divide both sides by -x+1.
b=\frac{-2ax-a-12}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
b=-\frac{2ax+a+12}{1-x}
Divide -2ax-a-12 by -x+1.
2ax-bx+a+b+12=0
Use the distributive property to multiply 2a-b by x.
2ax+a+b+12=bx
Add bx to both sides. Anything plus zero gives itself.
2ax+a+12=bx-b
Subtract b from both sides.
2ax+a=bx-b-12
Subtract 12 from both sides.
\left(2x+1\right)a=bx-b-12
Combine all terms containing a.
\frac{\left(2x+1\right)a}{2x+1}=\frac{bx-b-12}{2x+1}
Divide both sides by 2x+1.
a=\frac{bx-b-12}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
2ax-bx+a+b+12=0
Use the distributive property to multiply 2a-b by x.
-bx+a+b+12=-2ax
Subtract 2ax from both sides. Anything subtracted from zero gives its negation.
-bx+b+12=-2ax-a
Subtract a from both sides.
-bx+b=-2ax-a-12
Subtract 12 from both sides.
\left(-x+1\right)b=-2ax-a-12
Combine all terms containing b.
\left(1-x\right)b=-2ax-a-12
The equation is in standard form.
\frac{\left(1-x\right)b}{1-x}=\frac{-2ax-a-12}{1-x}
Divide both sides by -x+1.
b=\frac{-2ax-a-12}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
b=-\frac{2ax+a+12}{1-x}
Divide -2ax-a-12 by -x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}