Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

2a-b+3ia+2ib=-8+9i
Use the distributive property to multiply 3a+2b by i.
\left(2+3i\right)a-b+2ib=-8+9i
Combine 2a and 3ia to get \left(2+3i\right)a.
\left(2+3i\right)a+\left(-1+2i\right)b=-8+9i
Combine -b and 2ib to get \left(-1+2i\right)b.
\left(2+3i\right)a=-8+9i-\left(-1+2i\right)b
Subtract \left(-1+2i\right)b from both sides.
\left(2+3i\right)a=-8+9i+\left(1-2i\right)b
Multiply -1 and -1+2i to get 1-2i.
\left(2+3i\right)a=\left(1-2i\right)b+\left(-8+9i\right)
The equation is in standard form.
\frac{\left(2+3i\right)a}{2+3i}=\frac{\left(1-2i\right)b+\left(-8+9i\right)}{2+3i}
Divide both sides by 2+3i.
a=\frac{\left(1-2i\right)b+\left(-8+9i\right)}{2+3i}
Dividing by 2+3i undoes the multiplication by 2+3i.
a=\left(-\frac{4}{13}-\frac{7}{13}i\right)b+\left(\frac{11}{13}+\frac{42}{13}i\right)
Divide -8+9i+\left(1-2i\right)b by 2+3i.
2a-b+3ia+2ib=-8+9i
Use the distributive property to multiply 3a+2b by i.
\left(2+3i\right)a-b+2ib=-8+9i
Combine 2a and 3ia to get \left(2+3i\right)a.
\left(2+3i\right)a+\left(-1+2i\right)b=-8+9i
Combine -b and 2ib to get \left(-1+2i\right)b.
\left(-1+2i\right)b=-8+9i-\left(2+3i\right)a
Subtract \left(2+3i\right)a from both sides.
\left(-1+2i\right)b=-8+9i+\left(-2-3i\right)a
Multiply -1 and 2+3i to get -2-3i.
\left(-1+2i\right)b=\left(-2-3i\right)a+\left(-8+9i\right)
The equation is in standard form.
\frac{\left(-1+2i\right)b}{-1+2i}=\frac{\left(-2-3i\right)a+\left(-8+9i\right)}{-1+2i}
Divide both sides by -1+2i.
b=\frac{\left(-2-3i\right)a+\left(-8+9i\right)}{-1+2i}
Dividing by -1+2i undoes the multiplication by -1+2i.
b=\left(-\frac{4}{5}+\frac{7}{5}i\right)a+\left(\frac{26}{5}+\frac{7}{5}i\right)
Divide -8+9i+\left(-2-3i\right)a by -1+2i.