Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2a\right)^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Consider \left(2a-5b\right)\left(2a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(2a\right)^{2}.
4a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-5^{2}b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(5b\right)^{2}.
4a^{2}-25b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 5 to the power of 2 and get 25.
4a^{2}-25b^{2}+\left(6b\right)^{2}-\left(3a\right)^{2}
Consider \left(6b-3a\right)\left(6b+3a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}-25b^{2}+6^{2}b^{2}-\left(3a\right)^{2}
Expand \left(6b\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-\left(3a\right)^{2}
Calculate 6 to the power of 2 and get 36.
4a^{2}-25b^{2}+36b^{2}-3^{2}a^{2}
Expand \left(3a\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-9a^{2}
Calculate 3 to the power of 2 and get 9.
4a^{2}+11b^{2}-9a^{2}
Combine -25b^{2} and 36b^{2} to get 11b^{2}.
-5a^{2}+11b^{2}
Combine 4a^{2} and -9a^{2} to get -5a^{2}.
\left(2a\right)^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Consider \left(2a-5b\right)\left(2a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(2a\right)^{2}.
4a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-5^{2}b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(5b\right)^{2}.
4a^{2}-25b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 5 to the power of 2 and get 25.
4a^{2}-25b^{2}+\left(6b\right)^{2}-\left(3a\right)^{2}
Consider \left(6b-3a\right)\left(6b+3a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}-25b^{2}+6^{2}b^{2}-\left(3a\right)^{2}
Expand \left(6b\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-\left(3a\right)^{2}
Calculate 6 to the power of 2 and get 36.
4a^{2}-25b^{2}+36b^{2}-3^{2}a^{2}
Expand \left(3a\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-9a^{2}
Calculate 3 to the power of 2 and get 9.
4a^{2}+11b^{2}-9a^{2}
Combine -25b^{2} and 36b^{2} to get 11b^{2}.
-5a^{2}+11b^{2}
Combine 4a^{2} and -9a^{2} to get -5a^{2}.