Evaluate
11b^{2}-5a^{2}
Expand
11b^{2}-5a^{2}
Share
Copied to clipboard
\left(2a\right)^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Consider \left(2a-5b\right)\left(2a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(2a\right)^{2}.
4a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-5^{2}b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(5b\right)^{2}.
4a^{2}-25b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 5 to the power of 2 and get 25.
4a^{2}-25b^{2}+\left(6b\right)^{2}-\left(3a\right)^{2}
Consider \left(6b-3a\right)\left(6b+3a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}-25b^{2}+6^{2}b^{2}-\left(3a\right)^{2}
Expand \left(6b\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-\left(3a\right)^{2}
Calculate 6 to the power of 2 and get 36.
4a^{2}-25b^{2}+36b^{2}-3^{2}a^{2}
Expand \left(3a\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-9a^{2}
Calculate 3 to the power of 2 and get 9.
4a^{2}+11b^{2}-9a^{2}
Combine -25b^{2} and 36b^{2} to get 11b^{2}.
-5a^{2}+11b^{2}
Combine 4a^{2} and -9a^{2} to get -5a^{2}.
\left(2a\right)^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Consider \left(2a-5b\right)\left(2a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(2a\right)^{2}.
4a^{2}-\left(5b\right)^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-5^{2}b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Expand \left(5b\right)^{2}.
4a^{2}-25b^{2}+\left(6b-3a\right)\left(6b+3a\right)
Calculate 5 to the power of 2 and get 25.
4a^{2}-25b^{2}+\left(6b\right)^{2}-\left(3a\right)^{2}
Consider \left(6b-3a\right)\left(6b+3a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}-25b^{2}+6^{2}b^{2}-\left(3a\right)^{2}
Expand \left(6b\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-\left(3a\right)^{2}
Calculate 6 to the power of 2 and get 36.
4a^{2}-25b^{2}+36b^{2}-3^{2}a^{2}
Expand \left(3a\right)^{2}.
4a^{2}-25b^{2}+36b^{2}-9a^{2}
Calculate 3 to the power of 2 and get 9.
4a^{2}+11b^{2}-9a^{2}
Combine -25b^{2} and 36b^{2} to get 11b^{2}.
-5a^{2}+11b^{2}
Combine 4a^{2} and -9a^{2} to get -5a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}