Evaluate
\frac{\left(2a-3b\right)\left(6b-a\right)}{2}
Expand
\frac{15ab}{2}-9b^{2}-a^{2}
Share
Copied to clipboard
6ab+2a\left(-\frac{1}{2}\right)a-9b^{2}-3b\left(-\frac{1}{2}\right)a
Apply the distributive property by multiplying each term of 2a-3b by each term of 3b-\frac{1}{2}a.
6ab+2a^{2}\left(-\frac{1}{2}\right)-9b^{2}-3b\left(-\frac{1}{2}\right)a
Multiply a and a to get a^{2}.
6ab-a^{2}-9b^{2}-3b\left(-\frac{1}{2}\right)a
Cancel out 2 and 2.
6ab-a^{2}-9b^{2}+\frac{-3\left(-1\right)}{2}ba
Express -3\left(-\frac{1}{2}\right) as a single fraction.
6ab-a^{2}-9b^{2}+\frac{3}{2}ba
Multiply -3 and -1 to get 3.
\frac{15}{2}ab-a^{2}-9b^{2}
Combine 6ab and \frac{3}{2}ba to get \frac{15}{2}ab.
6ab+2a\left(-\frac{1}{2}\right)a-9b^{2}-3b\left(-\frac{1}{2}\right)a
Apply the distributive property by multiplying each term of 2a-3b by each term of 3b-\frac{1}{2}a.
6ab+2a^{2}\left(-\frac{1}{2}\right)-9b^{2}-3b\left(-\frac{1}{2}\right)a
Multiply a and a to get a^{2}.
6ab-a^{2}-9b^{2}-3b\left(-\frac{1}{2}\right)a
Cancel out 2 and 2.
6ab-a^{2}-9b^{2}+\frac{-3\left(-1\right)}{2}ba
Express -3\left(-\frac{1}{2}\right) as a single fraction.
6ab-a^{2}-9b^{2}+\frac{3}{2}ba
Multiply -3 and -1 to get 3.
\frac{15}{2}ab-a^{2}-9b^{2}
Combine 6ab and \frac{3}{2}ba to get \frac{15}{2}ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}