Solve for a
a=-1
a = \frac{14}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
4a^{2}-8a+4+a^{2}-a-2=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-2\right)^{2}.
5a^{2}-8a+4-a-2=16
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}-9a+4-2=16
Combine -8a and -a to get -9a.
5a^{2}-9a+2=16
Subtract 2 from 4 to get 2.
5a^{2}-9a+2-16=0
Subtract 16 from both sides.
5a^{2}-9a-14=0
Subtract 16 from 2 to get -14.
a+b=-9 ab=5\left(-14\right)=-70
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5a^{2}+aa+ba-14. To find a and b, set up a system to be solved.
1,-70 2,-35 5,-14 7,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Calculate the sum for each pair.
a=-14 b=5
The solution is the pair that gives sum -9.
\left(5a^{2}-14a\right)+\left(5a-14\right)
Rewrite 5a^{2}-9a-14 as \left(5a^{2}-14a\right)+\left(5a-14\right).
a\left(5a-14\right)+5a-14
Factor out a in 5a^{2}-14a.
\left(5a-14\right)\left(a+1\right)
Factor out common term 5a-14 by using distributive property.
a=\frac{14}{5} a=-1
To find equation solutions, solve 5a-14=0 and a+1=0.
4a^{2}-8a+4+a^{2}-a-2=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-2\right)^{2}.
5a^{2}-8a+4-a-2=16
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}-9a+4-2=16
Combine -8a and -a to get -9a.
5a^{2}-9a+2=16
Subtract 2 from 4 to get 2.
5a^{2}-9a+2-16=0
Subtract 16 from both sides.
5a^{2}-9a-14=0
Subtract 16 from 2 to get -14.
a=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 5\left(-14\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -9 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-9\right)±\sqrt{81-4\times 5\left(-14\right)}}{2\times 5}
Square -9.
a=\frac{-\left(-9\right)±\sqrt{81-20\left(-14\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-9\right)±\sqrt{81+280}}{2\times 5}
Multiply -20 times -14.
a=\frac{-\left(-9\right)±\sqrt{361}}{2\times 5}
Add 81 to 280.
a=\frac{-\left(-9\right)±19}{2\times 5}
Take the square root of 361.
a=\frac{9±19}{2\times 5}
The opposite of -9 is 9.
a=\frac{9±19}{10}
Multiply 2 times 5.
a=\frac{28}{10}
Now solve the equation a=\frac{9±19}{10} when ± is plus. Add 9 to 19.
a=\frac{14}{5}
Reduce the fraction \frac{28}{10} to lowest terms by extracting and canceling out 2.
a=-\frac{10}{10}
Now solve the equation a=\frac{9±19}{10} when ± is minus. Subtract 19 from 9.
a=-1
Divide -10 by 10.
a=\frac{14}{5} a=-1
The equation is now solved.
4a^{2}-8a+4+a^{2}-a-2=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-2\right)^{2}.
5a^{2}-8a+4-a-2=16
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}-9a+4-2=16
Combine -8a and -a to get -9a.
5a^{2}-9a+2=16
Subtract 2 from 4 to get 2.
5a^{2}-9a=16-2
Subtract 2 from both sides.
5a^{2}-9a=14
Subtract 2 from 16 to get 14.
\frac{5a^{2}-9a}{5}=\frac{14}{5}
Divide both sides by 5.
a^{2}-\frac{9}{5}a=\frac{14}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}-\frac{9}{5}a+\left(-\frac{9}{10}\right)^{2}=\frac{14}{5}+\left(-\frac{9}{10}\right)^{2}
Divide -\frac{9}{5}, the coefficient of the x term, by 2 to get -\frac{9}{10}. Then add the square of -\frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{9}{5}a+\frac{81}{100}=\frac{14}{5}+\frac{81}{100}
Square -\frac{9}{10} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{9}{5}a+\frac{81}{100}=\frac{361}{100}
Add \frac{14}{5} to \frac{81}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{9}{10}\right)^{2}=\frac{361}{100}
Factor a^{2}-\frac{9}{5}a+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{9}{10}\right)^{2}}=\sqrt{\frac{361}{100}}
Take the square root of both sides of the equation.
a-\frac{9}{10}=\frac{19}{10} a-\frac{9}{10}=-\frac{19}{10}
Simplify.
a=\frac{14}{5} a=-1
Add \frac{9}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}