Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2a\right)^{2}-1+\left(2a-1\right)^{2}-2a\left(a-2\right)
Consider \left(2a-1\right)\left(2a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}a^{2}-1+\left(2a-1\right)^{2}-2a\left(a-2\right)
Expand \left(2a\right)^{2}.
4a^{2}-1+\left(2a-1\right)^{2}-2a\left(a-2\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-1+4a^{2}-4a+1-2a\left(a-2\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-1\right)^{2}.
8a^{2}-1-4a+1-2a\left(a-2\right)
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}-4a-2a\left(a-2\right)
Add -1 and 1 to get 0.
8a^{2}-4a-2a^{2}+4a
Use the distributive property to multiply -2a by a-2.
6a^{2}-4a+4a
Combine 8a^{2} and -2a^{2} to get 6a^{2}.
6a^{2}
Combine -4a and 4a to get 0.
\left(2a\right)^{2}-1+\left(2a-1\right)^{2}-2a\left(a-2\right)
Consider \left(2a-1\right)\left(2a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}a^{2}-1+\left(2a-1\right)^{2}-2a\left(a-2\right)
Expand \left(2a\right)^{2}.
4a^{2}-1+\left(2a-1\right)^{2}-2a\left(a-2\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-1+4a^{2}-4a+1-2a\left(a-2\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-1\right)^{2}.
8a^{2}-1-4a+1-2a\left(a-2\right)
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}-4a-2a\left(a-2\right)
Add -1 and 1 to get 0.
8a^{2}-4a-2a^{2}+4a
Use the distributive property to multiply -2a by a-2.
6a^{2}-4a+4a
Combine 8a^{2} and -2a^{2} to get 6a^{2}.
6a^{2}
Combine -4a and 4a to get 0.