Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}-4a+1-4\left(1-2a\right)>0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-1\right)^{2}.
4a^{2}-4a+1-4+8a>0
Use the distributive property to multiply -4 by 1-2a.
4a^{2}-4a-3+8a>0
Subtract 4 from 1 to get -3.
4a^{2}+4a-3>0
Combine -4a and 8a to get 4a.
4a^{2}+4a-3=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-4±\sqrt{4^{2}-4\times 4\left(-3\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 4 for b, and -3 for c in the quadratic formula.
a=\frac{-4±8}{8}
Do the calculations.
a=\frac{1}{2} a=-\frac{3}{2}
Solve the equation a=\frac{-4±8}{8} when ± is plus and when ± is minus.
4\left(a-\frac{1}{2}\right)\left(a+\frac{3}{2}\right)>0
Rewrite the inequality by using the obtained solutions.
a-\frac{1}{2}<0 a+\frac{3}{2}<0
For the product to be positive, a-\frac{1}{2} and a+\frac{3}{2} have to be both negative or both positive. Consider the case when a-\frac{1}{2} and a+\frac{3}{2} are both negative.
a<-\frac{3}{2}
The solution satisfying both inequalities is a<-\frac{3}{2}.
a+\frac{3}{2}>0 a-\frac{1}{2}>0
Consider the case when a-\frac{1}{2} and a+\frac{3}{2} are both positive.
a>\frac{1}{2}
The solution satisfying both inequalities is a>\frac{1}{2}.
a<-\frac{3}{2}\text{; }a>\frac{1}{2}
The final solution is the union of the obtained solutions.