Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b\left(-\frac{2}{3}\right)b
Apply the distributive property by multiplying each term of 2a-\frac{2}{3}b by each term of -2a-\frac{2}{3}b.
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply b and b to get b^{2}.
-4a^{2}+\frac{2\left(-2\right)}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express 2\left(-\frac{2}{3}\right) as a single fraction.
-4a^{2}+\frac{-4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply 2 and -2 to get -4.
-4a^{2}-\frac{4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-4a^{2}-\frac{4}{3}ab+\frac{-2\left(-2\right)}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express -\frac{2}{3}\left(-2\right) as a single fraction.
-4a^{2}-\frac{4}{3}ab+\frac{4}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply -2 and -2 to get 4.
-4a^{2}-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Combine -\frac{4}{3}ab and \frac{4}{3}ba to get 0.
-4a^{2}+\frac{-2\left(-2\right)}{3\times 3}b^{2}
Multiply -\frac{2}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-4a^{2}+\frac{4}{9}b^{2}
Do the multiplications in the fraction \frac{-2\left(-2\right)}{3\times 3}.
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b\left(-\frac{2}{3}\right)b
Apply the distributive property by multiplying each term of 2a-\frac{2}{3}b by each term of -2a-\frac{2}{3}b.
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply b and b to get b^{2}.
-4a^{2}+\frac{2\left(-2\right)}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express 2\left(-\frac{2}{3}\right) as a single fraction.
-4a^{2}+\frac{-4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply 2 and -2 to get -4.
-4a^{2}-\frac{4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-4a^{2}-\frac{4}{3}ab+\frac{-2\left(-2\right)}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express -\frac{2}{3}\left(-2\right) as a single fraction.
-4a^{2}-\frac{4}{3}ab+\frac{4}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply -2 and -2 to get 4.
-4a^{2}-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Combine -\frac{4}{3}ab and \frac{4}{3}ba to get 0.
-4a^{2}+\frac{-2\left(-2\right)}{3\times 3}b^{2}
Multiply -\frac{2}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-4a^{2}+\frac{4}{9}b^{2}
Do the multiplications in the fraction \frac{-2\left(-2\right)}{3\times 3}.