Evaluate
\frac{4b^{2}}{9}-4a^{2}
Expand
\frac{4b^{2}}{9}-4a^{2}
Share
Copied to clipboard
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b\left(-\frac{2}{3}\right)b
Apply the distributive property by multiplying each term of 2a-\frac{2}{3}b by each term of -2a-\frac{2}{3}b.
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply b and b to get b^{2}.
-4a^{2}+\frac{2\left(-2\right)}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express 2\left(-\frac{2}{3}\right) as a single fraction.
-4a^{2}+\frac{-4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply 2 and -2 to get -4.
-4a^{2}-\frac{4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-4a^{2}-\frac{4}{3}ab+\frac{-2\left(-2\right)}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express -\frac{2}{3}\left(-2\right) as a single fraction.
-4a^{2}-\frac{4}{3}ab+\frac{4}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply -2 and -2 to get 4.
-4a^{2}-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Combine -\frac{4}{3}ab and \frac{4}{3}ba to get 0.
-4a^{2}+\frac{-2\left(-2\right)}{3\times 3}b^{2}
Multiply -\frac{2}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-4a^{2}+\frac{4}{9}b^{2}
Do the multiplications in the fraction \frac{-2\left(-2\right)}{3\times 3}.
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b\left(-\frac{2}{3}\right)b
Apply the distributive property by multiplying each term of 2a-\frac{2}{3}b by each term of -2a-\frac{2}{3}b.
-4a^{2}+2a\left(-\frac{2}{3}\right)b-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply b and b to get b^{2}.
-4a^{2}+\frac{2\left(-2\right)}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express 2\left(-\frac{2}{3}\right) as a single fraction.
-4a^{2}+\frac{-4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply 2 and -2 to get -4.
-4a^{2}-\frac{4}{3}ab-\frac{2}{3}b\left(-2\right)a-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-4a^{2}-\frac{4}{3}ab+\frac{-2\left(-2\right)}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Express -\frac{2}{3}\left(-2\right) as a single fraction.
-4a^{2}-\frac{4}{3}ab+\frac{4}{3}ba-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Multiply -2 and -2 to get 4.
-4a^{2}-\frac{2}{3}b^{2}\left(-\frac{2}{3}\right)
Combine -\frac{4}{3}ab and \frac{4}{3}ba to get 0.
-4a^{2}+\frac{-2\left(-2\right)}{3\times 3}b^{2}
Multiply -\frac{2}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-4a^{2}+\frac{4}{9}b^{2}
Do the multiplications in the fraction \frac{-2\left(-2\right)}{3\times 3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}