Evaluate
26ba^{2}
Expand
26ba^{2}
Quiz
Algebra
5 problems similar to:
( 2 a + b ) ^ { 3 } - ( 2 a - b ) ^ { 3 } + 2 b ( a + b ) ( a - b )
Share
Copied to clipboard
8a^{3}+12a^{2}b+6ab^{2}+b^{3}-\left(2a-b\right)^{3}+2b\left(a+b\right)\left(a-b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(2a+b\right)^{3}.
8a^{3}+12a^{2}b+6ab^{2}+b^{3}-\left(8a^{3}-12a^{2}b+6ab^{2}-b^{3}\right)+2b\left(a+b\right)\left(a-b\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(2a-b\right)^{3}.
8a^{3}+12a^{2}b+6ab^{2}+b^{3}-8a^{3}+12a^{2}b-6ab^{2}+b^{3}+2b\left(a+b\right)\left(a-b\right)
To find the opposite of 8a^{3}-12a^{2}b+6ab^{2}-b^{3}, find the opposite of each term.
12a^{2}b+6ab^{2}+b^{3}+12a^{2}b-6ab^{2}+b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine 8a^{3} and -8a^{3} to get 0.
24a^{2}b+6ab^{2}+b^{3}-6ab^{2}+b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine 12a^{2}b and 12a^{2}b to get 24a^{2}b.
24a^{2}b+b^{3}+b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine 6ab^{2} and -6ab^{2} to get 0.
24a^{2}b+2b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine b^{3} and b^{3} to get 2b^{3}.
24a^{2}b+2b^{3}+\left(2ba+2b^{2}\right)\left(a-b\right)
Use the distributive property to multiply 2b by a+b.
24a^{2}b+2b^{3}+2ba^{2}-2b^{3}
Use the distributive property to multiply 2ba+2b^{2} by a-b and combine like terms.
26a^{2}b+2b^{3}-2b^{3}
Combine 24a^{2}b and 2ba^{2} to get 26a^{2}b.
26a^{2}b
Combine 2b^{3} and -2b^{3} to get 0.
8a^{3}+12a^{2}b+6ab^{2}+b^{3}-\left(2a-b\right)^{3}+2b\left(a+b\right)\left(a-b\right)
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(2a+b\right)^{3}.
8a^{3}+12a^{2}b+6ab^{2}+b^{3}-\left(8a^{3}-12a^{2}b+6ab^{2}-b^{3}\right)+2b\left(a+b\right)\left(a-b\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(2a-b\right)^{3}.
8a^{3}+12a^{2}b+6ab^{2}+b^{3}-8a^{3}+12a^{2}b-6ab^{2}+b^{3}+2b\left(a+b\right)\left(a-b\right)
To find the opposite of 8a^{3}-12a^{2}b+6ab^{2}-b^{3}, find the opposite of each term.
12a^{2}b+6ab^{2}+b^{3}+12a^{2}b-6ab^{2}+b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine 8a^{3} and -8a^{3} to get 0.
24a^{2}b+6ab^{2}+b^{3}-6ab^{2}+b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine 12a^{2}b and 12a^{2}b to get 24a^{2}b.
24a^{2}b+b^{3}+b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine 6ab^{2} and -6ab^{2} to get 0.
24a^{2}b+2b^{3}+2b\left(a+b\right)\left(a-b\right)
Combine b^{3} and b^{3} to get 2b^{3}.
24a^{2}b+2b^{3}+\left(2ba+2b^{2}\right)\left(a-b\right)
Use the distributive property to multiply 2b by a+b.
24a^{2}b+2b^{3}+2ba^{2}-2b^{3}
Use the distributive property to multiply 2ba+2b^{2} by a-b and combine like terms.
26a^{2}b+2b^{3}-2b^{3}
Combine 24a^{2}b and 2ba^{2} to get 26a^{2}b.
26a^{2}b
Combine 2b^{3} and -2b^{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}