Evaluate
b\left(a+2b\right)
Expand
ab+2b^{2}
Share
Copied to clipboard
4a^{2}+4ab+b^{2}-\left(5a+b\right)\left(5a-b\right)+3a\left(7a-b\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+b\right)^{2}.
4a^{2}+4ab+b^{2}-\left(\left(5a\right)^{2}-b^{2}\right)+3a\left(7a-b\right)
Consider \left(5a+b\right)\left(5a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}+4ab+b^{2}-\left(5^{2}a^{2}-b^{2}\right)+3a\left(7a-b\right)
Expand \left(5a\right)^{2}.
4a^{2}+4ab+b^{2}-\left(25a^{2}-b^{2}\right)+3a\left(7a-b\right)
Calculate 5 to the power of 2 and get 25.
4a^{2}+4ab+b^{2}-25a^{2}+b^{2}+3a\left(7a-b\right)
To find the opposite of 25a^{2}-b^{2}, find the opposite of each term.
-21a^{2}+4ab+b^{2}+b^{2}+3a\left(7a-b\right)
Combine 4a^{2} and -25a^{2} to get -21a^{2}.
-21a^{2}+4ab+2b^{2}+3a\left(7a-b\right)
Combine b^{2} and b^{2} to get 2b^{2}.
-21a^{2}+4ab+2b^{2}+21a^{2}-3ab
Use the distributive property to multiply 3a by 7a-b.
4ab+2b^{2}-3ab
Combine -21a^{2} and 21a^{2} to get 0.
ab+2b^{2}
Combine 4ab and -3ab to get ab.
4a^{2}+4ab+b^{2}-\left(5a+b\right)\left(5a-b\right)+3a\left(7a-b\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+b\right)^{2}.
4a^{2}+4ab+b^{2}-\left(\left(5a\right)^{2}-b^{2}\right)+3a\left(7a-b\right)
Consider \left(5a+b\right)\left(5a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4a^{2}+4ab+b^{2}-\left(5^{2}a^{2}-b^{2}\right)+3a\left(7a-b\right)
Expand \left(5a\right)^{2}.
4a^{2}+4ab+b^{2}-\left(25a^{2}-b^{2}\right)+3a\left(7a-b\right)
Calculate 5 to the power of 2 and get 25.
4a^{2}+4ab+b^{2}-25a^{2}+b^{2}+3a\left(7a-b\right)
To find the opposite of 25a^{2}-b^{2}, find the opposite of each term.
-21a^{2}+4ab+b^{2}+b^{2}+3a\left(7a-b\right)
Combine 4a^{2} and -25a^{2} to get -21a^{2}.
-21a^{2}+4ab+2b^{2}+3a\left(7a-b\right)
Combine b^{2} and b^{2} to get 2b^{2}.
-21a^{2}+4ab+2b^{2}+21a^{2}-3ab
Use the distributive property to multiply 3a by 7a-b.
4ab+2b^{2}-3ab
Combine -21a^{2} and 21a^{2} to get 0.
ab+2b^{2}
Combine 4ab and -3ab to get ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}