Solve for a
a=-\frac{b^{2}}{4\left(b-1\right)}
b\neq 1
Solve for b (complex solution)
b=-2\sqrt{a}\sqrt{a+1}-2a
b=2\sqrt{a}\sqrt{a+1}-2a
Solve for b
b=-2\sqrt{a^{2}+a}-2a
b=2\sqrt{a^{2}+a}-2a\text{, }a\leq -1\text{ or }a\geq 0
Share
Copied to clipboard
4a^{2}+4ab+b^{2}=4a^{2}+4a
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+b\right)^{2}.
4a^{2}+4ab+b^{2}-4a^{2}=4a
Subtract 4a^{2} from both sides.
4ab+b^{2}=4a
Combine 4a^{2} and -4a^{2} to get 0.
4ab+b^{2}-4a=0
Subtract 4a from both sides.
4ab-4a=-b^{2}
Subtract b^{2} from both sides. Anything subtracted from zero gives its negation.
\left(4b-4\right)a=-b^{2}
Combine all terms containing a.
\frac{\left(4b-4\right)a}{4b-4}=-\frac{b^{2}}{4b-4}
Divide both sides by 4b-4.
a=-\frac{b^{2}}{4b-4}
Dividing by 4b-4 undoes the multiplication by 4b-4.
a=-\frac{b^{2}}{4\left(b-1\right)}
Divide -b^{2} by 4b-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}