Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-8a^{2}=18b^{2}
Subtract 8a^{2} from both sides.
18b^{2}=18b^{2}
Combine 8a^{2} and -8a^{2} to get 0.
b^{2}=b^{2}
Cancel out 18 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-18b^{2}=8a^{2}
Subtract 18b^{2} from both sides.
8a^{2}=8a^{2}
Combine 18b^{2} and -18b^{2} to get 0.
a^{2}=a^{2}
Cancel out 8 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-8a^{2}=18b^{2}
Subtract 8a^{2} from both sides.
18b^{2}=18b^{2}
Combine 8a^{2} and -8a^{2} to get 0.
b^{2}=b^{2}
Cancel out 18 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-18b^{2}=8a^{2}
Subtract 18b^{2} from both sides.
8a^{2}=8a^{2}
Combine 18b^{2} and -18b^{2} to get 0.
a^{2}=a^{2}
Cancel out 8 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}