Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-8a^{2}=18b^{2}
Subtract 8a^{2} from both sides.
18b^{2}=18b^{2}
Combine 8a^{2} and -8a^{2} to get 0.
b^{2}=b^{2}
Cancel out 18 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-18b^{2}=8a^{2}
Subtract 18b^{2} from both sides.
8a^{2}=8a^{2}
Combine 18b^{2} and -18b^{2} to get 0.
a^{2}=a^{2}
Cancel out 8 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-8a^{2}=18b^{2}
Subtract 8a^{2} from both sides.
18b^{2}=18b^{2}
Combine 8a^{2} and -8a^{2} to get 0.
b^{2}=b^{2}
Cancel out 18 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
4a^{2}+12ab+9b^{2}+\left(2a-3b\right)^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+3b\right)^{2}.
4a^{2}+12ab+9b^{2}+4a^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-3b\right)^{2}.
8a^{2}+12ab+9b^{2}-12ab+9b^{2}=8a^{2}+18b^{2}
Combine 4a^{2} and 4a^{2} to get 8a^{2}.
8a^{2}+9b^{2}+9b^{2}=8a^{2}+18b^{2}
Combine 12ab and -12ab to get 0.
8a^{2}+18b^{2}=8a^{2}+18b^{2}
Combine 9b^{2} and 9b^{2} to get 18b^{2}.
8a^{2}+18b^{2}-18b^{2}=8a^{2}
Subtract 18b^{2} from both sides.
8a^{2}=8a^{2}
Combine 18b^{2} and -18b^{2} to get 0.
a^{2}=a^{2}
Cancel out 8 on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.