Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}+12a+9=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2a+3\right)^{2}.
4a^{2}+12a+9-16=0
Subtract 16 from both sides.
4a^{2}+12a-7=0
Subtract 16 from 9 to get -7.
a+b=12 ab=4\left(-7\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4a^{2}+aa+ba-7. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-2 b=14
The solution is the pair that gives sum 12.
\left(4a^{2}-2a\right)+\left(14a-7\right)
Rewrite 4a^{2}+12a-7 as \left(4a^{2}-2a\right)+\left(14a-7\right).
2a\left(2a-1\right)+7\left(2a-1\right)
Factor out 2a in the first and 7 in the second group.
\left(2a-1\right)\left(2a+7\right)
Factor out common term 2a-1 by using distributive property.
a=\frac{1}{2} a=-\frac{7}{2}
To find equation solutions, solve 2a-1=0 and 2a+7=0.
4a^{2}+12a+9=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2a+3\right)^{2}.
4a^{2}+12a+9-16=0
Subtract 16 from both sides.
4a^{2}+12a-7=0
Subtract 16 from 9 to get -7.
a=\frac{-12±\sqrt{12^{2}-4\times 4\left(-7\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-12±\sqrt{144-4\times 4\left(-7\right)}}{2\times 4}
Square 12.
a=\frac{-12±\sqrt{144-16\left(-7\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-12±\sqrt{144+112}}{2\times 4}
Multiply -16 times -7.
a=\frac{-12±\sqrt{256}}{2\times 4}
Add 144 to 112.
a=\frac{-12±16}{2\times 4}
Take the square root of 256.
a=\frac{-12±16}{8}
Multiply 2 times 4.
a=\frac{4}{8}
Now solve the equation a=\frac{-12±16}{8} when ± is plus. Add -12 to 16.
a=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
a=-\frac{28}{8}
Now solve the equation a=\frac{-12±16}{8} when ± is minus. Subtract 16 from -12.
a=-\frac{7}{2}
Reduce the fraction \frac{-28}{8} to lowest terms by extracting and canceling out 4.
a=\frac{1}{2} a=-\frac{7}{2}
The equation is now solved.
4a^{2}+12a+9=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2a+3\right)^{2}.
4a^{2}+12a=16-9
Subtract 9 from both sides.
4a^{2}+12a=7
Subtract 9 from 16 to get 7.
\frac{4a^{2}+12a}{4}=\frac{7}{4}
Divide both sides by 4.
a^{2}+\frac{12}{4}a=\frac{7}{4}
Dividing by 4 undoes the multiplication by 4.
a^{2}+3a=\frac{7}{4}
Divide 12 by 4.
a^{2}+3a+\left(\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+3a+\frac{9}{4}=\frac{7+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+3a+\frac{9}{4}=4
Add \frac{7}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{3}{2}\right)^{2}=4
Factor a^{2}+3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{2}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a+\frac{3}{2}=2 a+\frac{3}{2}=-2
Simplify.
a=\frac{1}{2} a=-\frac{7}{2}
Subtract \frac{3}{2} from both sides of the equation.