Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2a\right)^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Consider \left(2a+1\right)\left(2a-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-1-5a+5-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Use the distributive property to multiply -5 by a-1.
4a^{2}+4-5a-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Add -1 and 5 to get 4.
4a^{2}+4-5a-4-4a^{2}+\left(a-1\right)^{2}
Use the distributive property to multiply -4 by 1+a^{2}.
4a^{2}-5a-4a^{2}+\left(a-1\right)^{2}
Subtract 4 from 4 to get 0.
-5a+\left(a-1\right)^{2}
Combine 4a^{2} and -4a^{2} to get 0.
-5a+a^{2}-2a+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
-7a+a^{2}+1
Combine -5a and -2a to get -7a.
\left(2a\right)^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Consider \left(2a+1\right)\left(2a-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-1-5a+5-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Use the distributive property to multiply -5 by a-1.
4a^{2}+4-5a-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Add -1 and 5 to get 4.
4a^{2}+4-5a-4-4a^{2}+\left(a-1\right)^{2}
Use the distributive property to multiply -4 by 1+a^{2}.
4a^{2}-5a-4a^{2}+\left(a-1\right)^{2}
Subtract 4 from 4 to get 0.
-5a+\left(a-1\right)^{2}
Combine 4a^{2} and -4a^{2} to get 0.
-5a+a^{2}-2a+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
-7a+a^{2}+1
Combine -5a and -2a to get -7a.