Evaluate
a^{2}-7a+1
Expand
a^{2}-7a+1
Share
Copied to clipboard
\left(2a\right)^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Consider \left(2a+1\right)\left(2a-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-1-5a+5-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Use the distributive property to multiply -5 by a-1.
4a^{2}+4-5a-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Add -1 and 5 to get 4.
4a^{2}+4-5a-4-4a^{2}+\left(a-1\right)^{2}
Use the distributive property to multiply -4 by 1+a^{2}.
4a^{2}-5a-4a^{2}+\left(a-1\right)^{2}
Subtract 4 from 4 to get 0.
-5a+\left(a-1\right)^{2}
Combine 4a^{2} and -4a^{2} to get 0.
-5a+a^{2}-2a+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
-7a+a^{2}+1
Combine -5a and -2a to get -7a.
\left(2a\right)^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Consider \left(2a+1\right)\left(2a-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-1-5\left(a-1\right)-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-1-5a+5-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Use the distributive property to multiply -5 by a-1.
4a^{2}+4-5a-4\left(1+a^{2}\right)+\left(a-1\right)^{2}
Add -1 and 5 to get 4.
4a^{2}+4-5a-4-4a^{2}+\left(a-1\right)^{2}
Use the distributive property to multiply -4 by 1+a^{2}.
4a^{2}-5a-4a^{2}+\left(a-1\right)^{2}
Subtract 4 from 4 to get 0.
-5a+\left(a-1\right)^{2}
Combine 4a^{2} and -4a^{2} to get 0.
-5a+a^{2}-2a+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
-7a+a^{2}+1
Combine -5a and -2a to get -7a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}