Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}\left(a^{2}\right)^{2}-\frac{12a^{3}-8a}{4a}
Expand \left(-6a^{2}\right)^{2}.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}a^{4}-\frac{12a^{3}-8a}{4a}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{12a^{3}-8a}{4a}
Calculate -6 to the power of 2 and get 36.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{4a\left(3a^{2}-2\right)}{4a}
Factor the expressions that are not already factored in \frac{12a^{3}-8a}{4a}.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\left(3a^{2}-2\right)
Cancel out 4a in both numerator and denominator.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
To find the opposite of 3a^{2}-2, find the opposite of each term.
\left(4a^{2}-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
Use the distributive property to multiply 2a+1 by 2a-1 and combine like terms.
36a^{4}+3a^{2}-3-36a^{4}-3a^{2}+2
Use the distributive property to multiply 4a^{2}-1 by 9a^{2}+3 and combine like terms.
3a^{2}-3-3a^{2}+2
Combine 36a^{4} and -36a^{4} to get 0.
-3+2
Combine 3a^{2} and -3a^{2} to get 0.
-1
Add -3 and 2 to get -1.