Evaluate
-1
Factor
-1
Share
Copied to clipboard
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}\left(a^{2}\right)^{2}-\frac{12a^{3}-8a}{4a}
Expand \left(-6a^{2}\right)^{2}.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-\left(-6\right)^{2}a^{4}-\frac{12a^{3}-8a}{4a}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{12a^{3}-8a}{4a}
Calculate -6 to the power of 2 and get 36.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\frac{4a\left(3a^{2}-2\right)}{4a}
Factor the expressions that are not already factored in \frac{12a^{3}-8a}{4a}.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-\left(3a^{2}-2\right)
Cancel out 4a in both numerator and denominator.
\left(2a+1\right)\left(2a-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
To find the opposite of 3a^{2}-2, find the opposite of each term.
\left(4a^{2}-1\right)\left(9a^{2}+3\right)-36a^{4}-3a^{2}+2
Use the distributive property to multiply 2a+1 by 2a-1 and combine like terms.
36a^{4}+3a^{2}-3-36a^{4}-3a^{2}+2
Use the distributive property to multiply 4a^{2}-1 by 9a^{2}+3 and combine like terms.
3a^{2}-3-3a^{2}+2
Combine 36a^{4} and -36a^{4} to get 0.
-3+2
Combine 3a^{2} and -3a^{2} to get 0.
-1
Add -3 and 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}