Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}+4a+1-\left(2a-2\right)\left(2a+2\right)-5
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+1\right)^{2}.
4a^{2}+4a+1-\left(\left(2a\right)^{2}-4\right)-5
Consider \left(2a-2\right)\left(2a+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
4a^{2}+4a+1-\left(2^{2}a^{2}-4\right)-5
Expand \left(2a\right)^{2}.
4a^{2}+4a+1-\left(4a^{2}-4\right)-5
Calculate 2 to the power of 2 and get 4.
4a^{2}+4a+1-4a^{2}+4-5
To find the opposite of 4a^{2}-4, find the opposite of each term.
4a+1+4-5
Combine 4a^{2} and -4a^{2} to get 0.
4a+5-5
Add 1 and 4 to get 5.
4a
Subtract 5 from 5 to get 0.
4a^{2}+4a+1-\left(2a-2\right)\left(2a+2\right)-5
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+1\right)^{2}.
4a^{2}+4a+1-\left(\left(2a\right)^{2}-4\right)-5
Consider \left(2a-2\right)\left(2a+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
4a^{2}+4a+1-\left(2^{2}a^{2}-4\right)-5
Expand \left(2a\right)^{2}.
4a^{2}+4a+1-\left(4a^{2}-4\right)-5
Calculate 2 to the power of 2 and get 4.
4a^{2}+4a+1-4a^{2}+4-5
To find the opposite of 4a^{2}-4, find the opposite of each term.
4a+1+4-5
Combine 4a^{2} and -4a^{2} to get 0.
4a+5-5
Add 1 and 4 to get 5.
4a
Subtract 5 from 5 to get 0.