Solve for a
a=-\frac{7}{24b}
b\neq 0
Solve for b
b=-\frac{7}{24a}
a\neq 0
Share
Copied to clipboard
4b^{2}\left(2a+\frac{3}{2b}\right)^{2}+7+4b\times 6a=4a^{2}\times 4b^{2}+2
Multiply both sides of the equation by 4b^{2}, the least common multiple of 4b^{2},b,2b^{2}.
4b^{2}\left(\frac{2a\times 2b}{2b}+\frac{3}{2b}\right)^{2}+7+4b\times 6a=4a^{2}\times 4b^{2}+2
To add or subtract expressions, expand them to make their denominators the same. Multiply 2a times \frac{2b}{2b}.
4b^{2}\times \left(\frac{2a\times 2b+3}{2b}\right)^{2}+7+4b\times 6a=4a^{2}\times 4b^{2}+2
Since \frac{2a\times 2b}{2b} and \frac{3}{2b} have the same denominator, add them by adding their numerators.
4b^{2}\times \left(\frac{4ab+3}{2b}\right)^{2}+7+4b\times 6a=4a^{2}\times 4b^{2}+2
Do the multiplications in 2a\times 2b+3.
4b^{2}\times \frac{\left(4ab+3\right)^{2}}{\left(2b\right)^{2}}+7+4b\times 6a=4a^{2}\times 4b^{2}+2
To raise \frac{4ab+3}{2b} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(4ab+3\right)^{2}}{\left(2b\right)^{2}}b^{2}+7+4b\times 6a=4a^{2}\times 4b^{2}+2
Express 4\times \frac{\left(4ab+3\right)^{2}}{\left(2b\right)^{2}} as a single fraction.
\frac{4\left(4ab+3\right)^{2}}{\left(2b\right)^{2}}b^{2}+7+24ba=4a^{2}\times 4b^{2}+2
Multiply 4 and 6 to get 24.
\frac{4\left(4ab+3\right)^{2}}{\left(2b\right)^{2}}b^{2}+7+24ba=16a^{2}b^{2}+2
Multiply 4 and 4 to get 16.
\frac{4\left(16a^{2}b^{2}+24ab+9\right)}{\left(2b\right)^{2}}b^{2}+7+24ba=16a^{2}b^{2}+2
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(4ab+3\right)^{2}.
\frac{4\left(16a^{2}b^{2}+24ab+9\right)}{2^{2}b^{2}}b^{2}+7+24ba=16a^{2}b^{2}+2
Expand \left(2b\right)^{2}.
\frac{4\left(16a^{2}b^{2}+24ab+9\right)}{4b^{2}}b^{2}+7+24ba=16a^{2}b^{2}+2
Calculate 2 to the power of 2 and get 4.
\frac{16a^{2}b^{2}+24ab+9}{b^{2}}b^{2}+7+24ba=16a^{2}b^{2}+2
Cancel out 4 in both numerator and denominator.
\frac{\left(16a^{2}b^{2}+24ab+9\right)b^{2}}{b^{2}}+7+24ba=16a^{2}b^{2}+2
Express \frac{16a^{2}b^{2}+24ab+9}{b^{2}}b^{2} as a single fraction.
16a^{2}b^{2}+24ab+9+7+24ba=16a^{2}b^{2}+2
Cancel out b^{2} in both numerator and denominator.
16a^{2}b^{2}+24ab+16+24ba=16a^{2}b^{2}+2
Add 9 and 7 to get 16.
16a^{2}b^{2}+48ab+16=16a^{2}b^{2}+2
Combine 24ab and 24ba to get 48ab.
16a^{2}b^{2}+48ab+16-16a^{2}b^{2}=2
Subtract 16a^{2}b^{2} from both sides.
48ab+16=2
Combine 16a^{2}b^{2} and -16a^{2}b^{2} to get 0.
48ab=2-16
Subtract 16 from both sides.
48ab=-14
Subtract 16 from 2 to get -14.
48ba=-14
The equation is in standard form.
\frac{48ba}{48b}=-\frac{14}{48b}
Divide both sides by 48b.
a=-\frac{14}{48b}
Dividing by 48b undoes the multiplication by 48b.
a=-\frac{7}{24b}
Divide -14 by 48b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}