Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2a\right)^{2}-\left(\frac{1}{4}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(\frac{1}{4}\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-\left(\frac{1}{4}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-\frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\left(2a\right)^{2}-\left(\frac{1}{4}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-\left(\frac{1}{4}\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-\left(\frac{1}{4}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-\frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.