Solve for x
x\leq 2
Graph
Share
Copied to clipboard
4-4x+x^{2}-7x+2\geq \left(x+4\right)\left(x-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-11x+x^{2}+2\geq \left(x+4\right)\left(x-4\right)
Combine -4x and -7x to get -11x.
6-11x+x^{2}\geq \left(x+4\right)\left(x-4\right)
Add 4 and 2 to get 6.
6-11x+x^{2}\geq x^{2}-16
Consider \left(x+4\right)\left(x-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
6-11x+x^{2}-x^{2}\geq -16
Subtract x^{2} from both sides.
6-11x\geq -16
Combine x^{2} and -x^{2} to get 0.
-11x\geq -16-6
Subtract 6 from both sides.
-11x\geq -22
Subtract 6 from -16 to get -22.
x\leq \frac{-22}{-11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
x\leq 2
Divide -22 by -11 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}