Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4-4x+x^{2}=x^{2}+\left(\frac{x}{\sqrt{3}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-4x+x^{2}=x^{2}+\left(\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4-4x+x^{2}=x^{2}+\left(\frac{x\sqrt{3}}{3}\right)^{2}
The square of \sqrt{3} is 3.
4-4x+x^{2}=x^{2}+\frac{\left(x\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{x\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
4-4x+x^{2}=\frac{x^{2}\times 3^{2}}{3^{2}}+\frac{\left(x\sqrt{3}\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3^{2}}{3^{2}}.
4-4x+x^{2}=\frac{x^{2}\times 3^{2}+\left(x\sqrt{3}\right)^{2}}{3^{2}}
Since \frac{x^{2}\times 3^{2}}{3^{2}} and \frac{\left(x\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
4-4x+x^{2}=\frac{x^{2}\times 9+\left(x\sqrt{3}\right)^{2}}{3^{2}}
Calculate 3 to the power of 2 and get 9.
4-4x+x^{2}=\frac{x^{2}\times 9+x^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Expand \left(x\sqrt{3}\right)^{2}.
4-4x+x^{2}=\frac{x^{2}\times 9+x^{2}\times 3}{3^{2}}
The square of \sqrt{3} is 3.
4-4x+x^{2}=\frac{12x^{2}}{3^{2}}
Combine x^{2}\times 9 and x^{2}\times 3 to get 12x^{2}.
4-4x+x^{2}=\frac{12x^{2}}{9}
Calculate 3 to the power of 2 and get 9.
4-4x+x^{2}=\frac{4}{3}x^{2}
Divide 12x^{2} by 9 to get \frac{4}{3}x^{2}.
4-4x+x^{2}-\frac{4}{3}x^{2}=0
Subtract \frac{4}{3}x^{2} from both sides.
4-4x-\frac{1}{3}x^{2}=0
Combine x^{2} and -\frac{4}{3}x^{2} to get -\frac{1}{3}x^{2}.
-\frac{1}{3}x^{2}-4x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-\frac{1}{3}\right)\times 4}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-\frac{1}{3}\right)\times 4}}{2\left(-\frac{1}{3}\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+\frac{4}{3}\times 4}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-\left(-4\right)±\sqrt{16+\frac{16}{3}}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times 4.
x=\frac{-\left(-4\right)±\sqrt{\frac{64}{3}}}{2\left(-\frac{1}{3}\right)}
Add 16 to \frac{16}{3}.
x=\frac{-\left(-4\right)±\frac{8\sqrt{3}}{3}}{2\left(-\frac{1}{3}\right)}
Take the square root of \frac{64}{3}.
x=\frac{4±\frac{8\sqrt{3}}{3}}{2\left(-\frac{1}{3}\right)}
The opposite of -4 is 4.
x=\frac{4±\frac{8\sqrt{3}}{3}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{\frac{8\sqrt{3}}{3}+4}{-\frac{2}{3}}
Now solve the equation x=\frac{4±\frac{8\sqrt{3}}{3}}{-\frac{2}{3}} when ± is plus. Add 4 to \frac{8\sqrt{3}}{3}.
x=-4\sqrt{3}-6
Divide 4+\frac{8\sqrt{3}}{3} by -\frac{2}{3} by multiplying 4+\frac{8\sqrt{3}}{3} by the reciprocal of -\frac{2}{3}.
x=\frac{-\frac{8\sqrt{3}}{3}+4}{-\frac{2}{3}}
Now solve the equation x=\frac{4±\frac{8\sqrt{3}}{3}}{-\frac{2}{3}} when ± is minus. Subtract \frac{8\sqrt{3}}{3} from 4.
x=4\sqrt{3}-6
Divide 4-\frac{8\sqrt{3}}{3} by -\frac{2}{3} by multiplying 4-\frac{8\sqrt{3}}{3} by the reciprocal of -\frac{2}{3}.
x=-4\sqrt{3}-6 x=4\sqrt{3}-6
The equation is now solved.
4-4x+x^{2}=x^{2}+\left(\frac{x}{\sqrt{3}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-4x+x^{2}=x^{2}+\left(\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4-4x+x^{2}=x^{2}+\left(\frac{x\sqrt{3}}{3}\right)^{2}
The square of \sqrt{3} is 3.
4-4x+x^{2}=x^{2}+\frac{\left(x\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{x\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
4-4x+x^{2}=\frac{x^{2}\times 3^{2}}{3^{2}}+\frac{\left(x\sqrt{3}\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3^{2}}{3^{2}}.
4-4x+x^{2}=\frac{x^{2}\times 3^{2}+\left(x\sqrt{3}\right)^{2}}{3^{2}}
Since \frac{x^{2}\times 3^{2}}{3^{2}} and \frac{\left(x\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
4-4x+x^{2}=\frac{x^{2}\times 9+\left(x\sqrt{3}\right)^{2}}{3^{2}}
Calculate 3 to the power of 2 and get 9.
4-4x+x^{2}=\frac{x^{2}\times 9+x^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Expand \left(x\sqrt{3}\right)^{2}.
4-4x+x^{2}=\frac{x^{2}\times 9+x^{2}\times 3}{3^{2}}
The square of \sqrt{3} is 3.
4-4x+x^{2}=\frac{12x^{2}}{3^{2}}
Combine x^{2}\times 9 and x^{2}\times 3 to get 12x^{2}.
4-4x+x^{2}=\frac{12x^{2}}{9}
Calculate 3 to the power of 2 and get 9.
4-4x+x^{2}=\frac{4}{3}x^{2}
Divide 12x^{2} by 9 to get \frac{4}{3}x^{2}.
4-4x+x^{2}-\frac{4}{3}x^{2}=0
Subtract \frac{4}{3}x^{2} from both sides.
4-4x-\frac{1}{3}x^{2}=0
Combine x^{2} and -\frac{4}{3}x^{2} to get -\frac{1}{3}x^{2}.
-4x-\frac{1}{3}x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{3}x^{2}-4x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{3}x^{2}-4x}{-\frac{1}{3}}=-\frac{4}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\left(-\frac{4}{-\frac{1}{3}}\right)x=-\frac{4}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}+12x=-\frac{4}{-\frac{1}{3}}
Divide -4 by -\frac{1}{3} by multiplying -4 by the reciprocal of -\frac{1}{3}.
x^{2}+12x=12
Divide -4 by -\frac{1}{3} by multiplying -4 by the reciprocal of -\frac{1}{3}.
x^{2}+12x+6^{2}=12+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=12+36
Square 6.
x^{2}+12x+36=48
Add 12 to 36.
\left(x+6\right)^{2}=48
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{48}
Take the square root of both sides of the equation.
x+6=4\sqrt{3} x+6=-4\sqrt{3}
Simplify.
x=4\sqrt{3}-6 x=-4\sqrt{3}-6
Subtract 6 from both sides of the equation.