Solve for w
w=3
Share
Copied to clipboard
4-2w^{2}-2w+w^{3}=7
Use the distributive property to multiply 2-w by 2-w^{2}.
4-2w^{2}-2w+w^{3}-7=0
Subtract 7 from both sides.
-3-2w^{2}-2w+w^{3}=0
Subtract 7 from 4 to get -3.
w^{3}-2w^{2}-2w-3=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±3,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -3 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
w=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
w^{2}+w+1=0
By Factor theorem, w-k is a factor of the polynomial for each root k. Divide w^{3}-2w^{2}-2w-3 by w-3 to get w^{2}+w+1. Solve the equation where the result equals to 0.
w=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and 1 for c in the quadratic formula.
w=\frac{-1±\sqrt{-3}}{2}
Do the calculations.
w\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
w=3
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}