Solve for m
m = \frac{\sqrt{481} + 21}{20} \approx 2.14658561
m=\frac{21-\sqrt{481}}{20}\approx -0.04658561
Share
Copied to clipboard
1000+1500m-1000m^{2}+\left(3-m\right)\left(300+1000m\right)=1700
Use the distributive property to multiply 2-m by 500+1000m and combine like terms.
1000+1500m-1000m^{2}+900+2700m-1000m^{2}=1700
Use the distributive property to multiply 3-m by 300+1000m and combine like terms.
1900+1500m-1000m^{2}+2700m-1000m^{2}=1700
Add 1000 and 900 to get 1900.
1900+4200m-1000m^{2}-1000m^{2}=1700
Combine 1500m and 2700m to get 4200m.
1900+4200m-2000m^{2}=1700
Combine -1000m^{2} and -1000m^{2} to get -2000m^{2}.
1900+4200m-2000m^{2}-1700=0
Subtract 1700 from both sides.
200+4200m-2000m^{2}=0
Subtract 1700 from 1900 to get 200.
-2000m^{2}+4200m+200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-4200±\sqrt{4200^{2}-4\left(-2000\right)\times 200}}{2\left(-2000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2000 for a, 4200 for b, and 200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4200±\sqrt{17640000-4\left(-2000\right)\times 200}}{2\left(-2000\right)}
Square 4200.
m=\frac{-4200±\sqrt{17640000+8000\times 200}}{2\left(-2000\right)}
Multiply -4 times -2000.
m=\frac{-4200±\sqrt{17640000+1600000}}{2\left(-2000\right)}
Multiply 8000 times 200.
m=\frac{-4200±\sqrt{19240000}}{2\left(-2000\right)}
Add 17640000 to 1600000.
m=\frac{-4200±200\sqrt{481}}{2\left(-2000\right)}
Take the square root of 19240000.
m=\frac{-4200±200\sqrt{481}}{-4000}
Multiply 2 times -2000.
m=\frac{200\sqrt{481}-4200}{-4000}
Now solve the equation m=\frac{-4200±200\sqrt{481}}{-4000} when ± is plus. Add -4200 to 200\sqrt{481}.
m=\frac{21-\sqrt{481}}{20}
Divide -4200+200\sqrt{481} by -4000.
m=\frac{-200\sqrt{481}-4200}{-4000}
Now solve the equation m=\frac{-4200±200\sqrt{481}}{-4000} when ± is minus. Subtract 200\sqrt{481} from -4200.
m=\frac{\sqrt{481}+21}{20}
Divide -4200-200\sqrt{481} by -4000.
m=\frac{21-\sqrt{481}}{20} m=\frac{\sqrt{481}+21}{20}
The equation is now solved.
1000+1500m-1000m^{2}+\left(3-m\right)\left(300+1000m\right)=1700
Use the distributive property to multiply 2-m by 500+1000m and combine like terms.
1000+1500m-1000m^{2}+900+2700m-1000m^{2}=1700
Use the distributive property to multiply 3-m by 300+1000m and combine like terms.
1900+1500m-1000m^{2}+2700m-1000m^{2}=1700
Add 1000 and 900 to get 1900.
1900+4200m-1000m^{2}-1000m^{2}=1700
Combine 1500m and 2700m to get 4200m.
1900+4200m-2000m^{2}=1700
Combine -1000m^{2} and -1000m^{2} to get -2000m^{2}.
4200m-2000m^{2}=1700-1900
Subtract 1900 from both sides.
4200m-2000m^{2}=-200
Subtract 1900 from 1700 to get -200.
-2000m^{2}+4200m=-200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2000m^{2}+4200m}{-2000}=-\frac{200}{-2000}
Divide both sides by -2000.
m^{2}+\frac{4200}{-2000}m=-\frac{200}{-2000}
Dividing by -2000 undoes the multiplication by -2000.
m^{2}-\frac{21}{10}m=-\frac{200}{-2000}
Reduce the fraction \frac{4200}{-2000} to lowest terms by extracting and canceling out 200.
m^{2}-\frac{21}{10}m=\frac{1}{10}
Reduce the fraction \frac{-200}{-2000} to lowest terms by extracting and canceling out 200.
m^{2}-\frac{21}{10}m+\left(-\frac{21}{20}\right)^{2}=\frac{1}{10}+\left(-\frac{21}{20}\right)^{2}
Divide -\frac{21}{10}, the coefficient of the x term, by 2 to get -\frac{21}{20}. Then add the square of -\frac{21}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{21}{10}m+\frac{441}{400}=\frac{1}{10}+\frac{441}{400}
Square -\frac{21}{20} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{21}{10}m+\frac{441}{400}=\frac{481}{400}
Add \frac{1}{10} to \frac{441}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{21}{20}\right)^{2}=\frac{481}{400}
Factor m^{2}-\frac{21}{10}m+\frac{441}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{21}{20}\right)^{2}}=\sqrt{\frac{481}{400}}
Take the square root of both sides of the equation.
m-\frac{21}{20}=\frac{\sqrt{481}}{20} m-\frac{21}{20}=-\frac{\sqrt{481}}{20}
Simplify.
m=\frac{\sqrt{481}+21}{20} m=\frac{21-\sqrt{481}}{20}
Add \frac{21}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}