Solve for f
\left\{\begin{matrix}f=\frac{i\left(\left(-2+i\right)x+\left(2-i\right)y+\left(-6-2i\right)\xi \right)}{o}\text{, }&o\neq 0\\f\in \mathrm{C}\text{, }&x=y+\left(-2-2i\right)\xi \text{ and }o=0\end{matrix}\right.
Solve for o
\left\{\begin{matrix}o=\frac{i\left(\left(-2+i\right)x+\left(2-i\right)y+\left(-6-2i\right)\xi \right)}{f}\text{, }&f\neq 0\\o\in \mathrm{C}\text{, }&x=y+\left(-2-2i\right)\xi \text{ and }f=0\end{matrix}\right.
Share
Copied to clipboard
\left(2-i\right)x+\left(2-i\right)yi=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Use the distributive property to multiply 2-i by x+yi.
\left(2-i\right)x+\left(1+2i\right)y=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Multiply 2-i and i to get 1+2i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{1+i}{1-i}fo
Use the distributive property to multiply y-2\xi by 3+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}fo
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{2i}{2}fo
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +ifo
Divide 2i by 2 to get i.
\left(3+i\right)y+\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y
Swap sides so that all variable terms are on the left hand side.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y-\left(3+i\right)y
Subtract \left(3+i\right)y from both sides.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(-2+i\right)y
Combine \left(1+2i\right)y and \left(-3-i\right)y to get \left(-2+i\right)y.
ifo=\left(2-i\right)x+\left(-2+i\right)y-\left(-6-2i\right)\xi
Subtract \left(-6-2i\right)\xi from both sides.
ifo=\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi
Multiply -1 and -6-2i to get 6+2i.
iof=\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi
The equation is in standard form.
\frac{iof}{io}=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{io}
Divide both sides by io.
f=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{io}
Dividing by io undoes the multiplication by io.
f=-\frac{i\left(\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi \right)}{o}
Divide \left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi by io.
\left(2-i\right)x+\left(2-i\right)yi=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Use the distributive property to multiply 2-i by x+yi.
\left(2-i\right)x+\left(1+2i\right)y=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Multiply 2-i and i to get 1+2i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{1+i}{1-i}fo
Use the distributive property to multiply y-2\xi by 3+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}fo
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{2i}{2}fo
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +ifo
Divide 2i by 2 to get i.
\left(3+i\right)y+\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y
Swap sides so that all variable terms are on the left hand side.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y-\left(3+i\right)y
Subtract \left(3+i\right)y from both sides.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(-2+i\right)y
Combine \left(1+2i\right)y and \left(-3-i\right)y to get \left(-2+i\right)y.
ifo=\left(2-i\right)x+\left(-2+i\right)y-\left(-6-2i\right)\xi
Subtract \left(-6-2i\right)\xi from both sides.
ifo=\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi
Multiply -1 and -6-2i to get 6+2i.
\frac{ifo}{if}=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{if}
Divide both sides by if.
o=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{if}
Dividing by if undoes the multiplication by if.
o=-\frac{i\left(\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi \right)}{f}
Divide \left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi by if.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}