Skip to main content
Solve for f
Tick mark Image
Solve for o
Tick mark Image

Similar Problems from Web Search

Share

\left(2-i\right)x+\left(2-i\right)yi=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Use the distributive property to multiply 2-i by x+yi.
\left(2-i\right)x+\left(1+2i\right)y=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Multiply 2-i and i to get 1+2i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{1+i}{1-i}fo
Use the distributive property to multiply y-2\xi by 3+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}fo
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{2i}{2}fo
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +ifo
Divide 2i by 2 to get i.
\left(3+i\right)y+\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y
Swap sides so that all variable terms are on the left hand side.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y-\left(3+i\right)y
Subtract \left(3+i\right)y from both sides.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(-2+i\right)y
Combine \left(1+2i\right)y and \left(-3-i\right)y to get \left(-2+i\right)y.
ifo=\left(2-i\right)x+\left(-2+i\right)y-\left(-6-2i\right)\xi
Subtract \left(-6-2i\right)\xi from both sides.
ifo=\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi
Multiply -1 and -6-2i to get 6+2i.
iof=\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi
The equation is in standard form.
\frac{iof}{io}=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{io}
Divide both sides by io.
f=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{io}
Dividing by io undoes the multiplication by io.
f=-\frac{i\left(\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi \right)}{o}
Divide \left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi by io.
\left(2-i\right)x+\left(2-i\right)yi=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Use the distributive property to multiply 2-i by x+yi.
\left(2-i\right)x+\left(1+2i\right)y=\left(y-2\xi \right)\left(3+i\right)+\frac{1+i}{1-i}fo
Multiply 2-i and i to get 1+2i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{1+i}{1-i}fo
Use the distributive property to multiply y-2\xi by 3+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}fo
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +\frac{2i}{2}fo
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(2-i\right)x+\left(1+2i\right)y=\left(3+i\right)y+\left(-6-2i\right)\xi +ifo
Divide 2i by 2 to get i.
\left(3+i\right)y+\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y
Swap sides so that all variable terms are on the left hand side.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(1+2i\right)y-\left(3+i\right)y
Subtract \left(3+i\right)y from both sides.
\left(-6-2i\right)\xi +ifo=\left(2-i\right)x+\left(-2+i\right)y
Combine \left(1+2i\right)y and \left(-3-i\right)y to get \left(-2+i\right)y.
ifo=\left(2-i\right)x+\left(-2+i\right)y-\left(-6-2i\right)\xi
Subtract \left(-6-2i\right)\xi from both sides.
ifo=\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi
Multiply -1 and -6-2i to get 6+2i.
\frac{ifo}{if}=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{if}
Divide both sides by if.
o=\frac{\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi }{if}
Dividing by if undoes the multiplication by if.
o=-\frac{i\left(\left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi \right)}{f}
Divide \left(2-i\right)x+\left(-2+i\right)y+\left(6+2i\right)\xi by if.