Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(2-i\right)\times \frac{\left(2+4i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{2+4i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(2-i\right)\times \frac{\left(2+4i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2-i\right)\times \frac{\left(2+4i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\left(2-i\right)\times \frac{2\times 1+2\left(-i\right)+4i\times 1+4\left(-1\right)i^{2}}{2}
Multiply complex numbers 2+4i and 1-i like you multiply binomials.
\left(2-i\right)\times \frac{2\times 1+2\left(-i\right)+4i\times 1+4\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
\left(2-i\right)\times \frac{2-2i+4i+4}{2}
Do the multiplications in 2\times 1+2\left(-i\right)+4i\times 1+4\left(-1\right)\left(-1\right).
\left(2-i\right)\times \frac{2+4+\left(-2+4\right)i}{2}
Combine the real and imaginary parts in 2-2i+4i+4.
\left(2-i\right)\times \frac{6+2i}{2}
Do the additions in 2+4+\left(-2+4\right)i.
\left(2-i\right)\left(3+i\right)
Divide 6+2i by 2 to get 3+i.
2\times 3+2i-i\times 3-i^{2}
Multiply complex numbers 2-i and 3+i like you multiply binomials.
2\times 3+2i-i\times 3-\left(-1\right)
By definition, i^{2} is -1.
6+2i-3i+1
Do the multiplications.
6+1+\left(2-3\right)i
Combine the real and imaginary parts.
7-i
Do the additions.
Re(\left(2-i\right)\times \frac{\left(2+4i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2+4i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(2-i\right)\times \frac{\left(2+4i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\left(2-i\right)\times \frac{\left(2+4i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\left(2-i\right)\times \frac{2\times 1+2\left(-i\right)+4i\times 1+4\left(-1\right)i^{2}}{2})
Multiply complex numbers 2+4i and 1-i like you multiply binomials.
Re(\left(2-i\right)\times \frac{2\times 1+2\left(-i\right)+4i\times 1+4\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\left(2-i\right)\times \frac{2-2i+4i+4}{2})
Do the multiplications in 2\times 1+2\left(-i\right)+4i\times 1+4\left(-1\right)\left(-1\right).
Re(\left(2-i\right)\times \frac{2+4+\left(-2+4\right)i}{2})
Combine the real and imaginary parts in 2-2i+4i+4.
Re(\left(2-i\right)\times \frac{6+2i}{2})
Do the additions in 2+4+\left(-2+4\right)i.
Re(\left(2-i\right)\left(3+i\right))
Divide 6+2i by 2 to get 3+i.
Re(2\times 3+2i-i\times 3-i^{2})
Multiply complex numbers 2-i and 3+i like you multiply binomials.
Re(2\times 3+2i-i\times 3-\left(-1\right))
By definition, i^{2} is -1.
Re(6+2i-3i+1)
Do the multiplications in 2\times 3+2i-i\times 3-\left(-1\right).
Re(6+1+\left(2-3\right)i)
Combine the real and imaginary parts in 6+2i-3i+1.
Re(7-i)
Do the additions in 6+1+\left(2-3\right)i.
7
The real part of 7-i is 7.