Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

x+yi=\frac{4+i}{2-3i}
Divide both sides by 2-3i.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator of \frac{4+i}{2-3i} by the complex conjugate of the denominator, 2+3i.
x+yi=\frac{5+14i}{13}
Do the multiplications in \frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
x+yi=\frac{5}{13}+\frac{14}{13}i
Divide 5+14i by 13 to get \frac{5}{13}+\frac{14}{13}i.
x=\frac{5}{13}+\frac{14}{13}i-yi
Subtract yi from both sides.
x=\frac{5}{13}+\frac{14}{13}i-iy
Multiply -1 and i to get -i.
x+yi=\frac{4+i}{2-3i}
Divide both sides by 2-3i.
x+yi=\frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator of \frac{4+i}{2-3i} by the complex conjugate of the denominator, 2+3i.
x+yi=\frac{5+14i}{13}
Do the multiplications in \frac{\left(4+i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
x+yi=\frac{5}{13}+\frac{14}{13}i
Divide 5+14i by 13 to get \frac{5}{13}+\frac{14}{13}i.
yi=\frac{5}{13}+\frac{14}{13}i-x
Subtract x from both sides.
iy=\frac{5}{13}+\frac{14}{13}i-x
The equation is in standard form.
\frac{iy}{i}=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Divide both sides by i.
y=\frac{\frac{5}{13}+\frac{14}{13}i-x}{i}
Dividing by i undoes the multiplication by i.
y=ix+\left(\frac{14}{13}-\frac{5}{13}i\right)
Divide \frac{5}{13}+\frac{14}{13}i-x by i.