Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4-\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
4-5+\left(2-\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
The square of \sqrt{5} is 5.
-1+\left(2-\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
Subtract 5 from 4 to get -1.
-1+4-4\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{2}\right)^{2}.
-1+4-4\sqrt{2}+2-\frac{1}{\sqrt{2}}
The square of \sqrt{2} is 2.
-1+6-4\sqrt{2}-\frac{1}{\sqrt{2}}
Add 4 and 2 to get 6.
5-4\sqrt{2}-\frac{1}{\sqrt{2}}
Add -1 and 6 to get 5.
5-4\sqrt{2}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5-4\sqrt{2}-\frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
5-\frac{9}{2}\sqrt{2}
Combine -4\sqrt{2} and -\frac{\sqrt{2}}{2} to get -\frac{9}{2}\sqrt{2}.