Evaluate
-\frac{9\sqrt{2}}{2}+5\approx -1.363961031
Share
Copied to clipboard
4-\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
4-5+\left(2-\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
The square of \sqrt{5} is 5.
-1+\left(2-\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
Subtract 5 from 4 to get -1.
-1+4-4\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{2}\right)^{2}.
-1+4-4\sqrt{2}+2-\frac{1}{\sqrt{2}}
The square of \sqrt{2} is 2.
-1+6-4\sqrt{2}-\frac{1}{\sqrt{2}}
Add 4 and 2 to get 6.
5-4\sqrt{2}-\frac{1}{\sqrt{2}}
Add -1 and 6 to get 5.
5-4\sqrt{2}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5-4\sqrt{2}-\frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
5-\frac{9}{2}\sqrt{2}
Combine -4\sqrt{2} and -\frac{\sqrt{2}}{2} to get -\frac{9}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}