Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4-\left(\sqrt{5}\right)^{2}+\left(\sqrt{5}-1\right)^{2}
Consider \left(2-\sqrt{5}\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
4-5+\left(\sqrt{5}-1\right)^{2}
The square of \sqrt{5} is 5.
-1+\left(\sqrt{5}-1\right)^{2}
Subtract 5 from 4 to get -1.
-1+\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
-1+5-2\sqrt{5}+1
The square of \sqrt{5} is 5.
-1+6-2\sqrt{5}
Add 5 and 1 to get 6.
5-2\sqrt{5}
Add -1 and 6 to get 5.