Evaluate
\frac{24}{35}\approx 0.685714286
Factor
\frac{2 ^ {3} \cdot 3}{5 \cdot 7} = 0.6857142857142857
Share
Copied to clipboard
\frac{\left(\frac{16}{8}-\frac{7}{8}\right)\times \frac{8}{9}}{\frac{5}{8}+\frac{5}{6}}
Convert 2 to fraction \frac{16}{8}.
\frac{\frac{16-7}{8}\times \frac{8}{9}}{\frac{5}{8}+\frac{5}{6}}
Since \frac{16}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{8}\times \frac{8}{9}}{\frac{5}{8}+\frac{5}{6}}
Subtract 7 from 16 to get 9.
\frac{1}{\frac{5}{8}+\frac{5}{6}}
Cancel out \frac{9}{8} and its reciprocal \frac{8}{9}.
\frac{1}{\frac{15}{24}+\frac{20}{24}}
Least common multiple of 8 and 6 is 24. Convert \frac{5}{8} and \frac{5}{6} to fractions with denominator 24.
\frac{1}{\frac{15+20}{24}}
Since \frac{15}{24} and \frac{20}{24} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{35}{24}}
Add 15 and 20 to get 35.
1\times \frac{24}{35}
Divide 1 by \frac{35}{24} by multiplying 1 by the reciprocal of \frac{35}{24}.
\frac{24}{35}
Multiply 1 and \frac{24}{35} to get \frac{24}{35}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}