Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

4-\frac{12}{5}t+\frac{9}{25}t^{2}=4\left(-2+\frac{4}{5}t\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\frac{3}{5}t\right)^{2}.
4-\frac{12}{5}t+\frac{9}{25}t^{2}=-8+\frac{16}{5}t
Use the distributive property to multiply 4 by -2+\frac{4}{5}t.
4-\frac{12}{5}t+\frac{9}{25}t^{2}-\left(-8\right)=\frac{16}{5}t
Subtract -8 from both sides.
4-\frac{12}{5}t+\frac{9}{25}t^{2}+8=\frac{16}{5}t
The opposite of -8 is 8.
4-\frac{12}{5}t+\frac{9}{25}t^{2}+8-\frac{16}{5}t=0
Subtract \frac{16}{5}t from both sides.
12-\frac{12}{5}t+\frac{9}{25}t^{2}-\frac{16}{5}t=0
Add 4 and 8 to get 12.
12-\frac{28}{5}t+\frac{9}{25}t^{2}=0
Combine -\frac{12}{5}t and -\frac{16}{5}t to get -\frac{28}{5}t.
\frac{9}{25}t^{2}-\frac{28}{5}t+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{28}{5}\right)±\sqrt{\left(-\frac{28}{5}\right)^{2}-4\times \frac{9}{25}\times 12}}{2\times \frac{9}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{9}{25} for a, -\frac{28}{5} for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{28}{5}\right)±\sqrt{\frac{784}{25}-4\times \frac{9}{25}\times 12}}{2\times \frac{9}{25}}
Square -\frac{28}{5} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{28}{5}\right)±\sqrt{\frac{784}{25}-\frac{36}{25}\times 12}}{2\times \frac{9}{25}}
Multiply -4 times \frac{9}{25}.
t=\frac{-\left(-\frac{28}{5}\right)±\sqrt{\frac{784-432}{25}}}{2\times \frac{9}{25}}
Multiply -\frac{36}{25} times 12.
t=\frac{-\left(-\frac{28}{5}\right)±\sqrt{\frac{352}{25}}}{2\times \frac{9}{25}}
Add \frac{784}{25} to -\frac{432}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{28}{5}\right)±\frac{4\sqrt{22}}{5}}{2\times \frac{9}{25}}
Take the square root of \frac{352}{25}.
t=\frac{\frac{28}{5}±\frac{4\sqrt{22}}{5}}{2\times \frac{9}{25}}
The opposite of -\frac{28}{5} is \frac{28}{5}.
t=\frac{\frac{28}{5}±\frac{4\sqrt{22}}{5}}{\frac{18}{25}}
Multiply 2 times \frac{9}{25}.
t=\frac{4\sqrt{22}+28}{\frac{18}{25}\times 5}
Now solve the equation t=\frac{\frac{28}{5}±\frac{4\sqrt{22}}{5}}{\frac{18}{25}} when ± is plus. Add \frac{28}{5} to \frac{4\sqrt{22}}{5}.
t=\frac{10\sqrt{22}+70}{9}
Divide \frac{28+4\sqrt{22}}{5} by \frac{18}{25} by multiplying \frac{28+4\sqrt{22}}{5} by the reciprocal of \frac{18}{25}.
t=\frac{28-4\sqrt{22}}{\frac{18}{25}\times 5}
Now solve the equation t=\frac{\frac{28}{5}±\frac{4\sqrt{22}}{5}}{\frac{18}{25}} when ± is minus. Subtract \frac{4\sqrt{22}}{5} from \frac{28}{5}.
t=\frac{70-10\sqrt{22}}{9}
Divide \frac{28-4\sqrt{22}}{5} by \frac{18}{25} by multiplying \frac{28-4\sqrt{22}}{5} by the reciprocal of \frac{18}{25}.
t=\frac{10\sqrt{22}+70}{9} t=\frac{70-10\sqrt{22}}{9}
The equation is now solved.
4-\frac{12}{5}t+\frac{9}{25}t^{2}=4\left(-2+\frac{4}{5}t\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\frac{3}{5}t\right)^{2}.
4-\frac{12}{5}t+\frac{9}{25}t^{2}=-8+\frac{16}{5}t
Use the distributive property to multiply 4 by -2+\frac{4}{5}t.
4-\frac{12}{5}t+\frac{9}{25}t^{2}-\frac{16}{5}t=-8
Subtract \frac{16}{5}t from both sides.
4-\frac{28}{5}t+\frac{9}{25}t^{2}=-8
Combine -\frac{12}{5}t and -\frac{16}{5}t to get -\frac{28}{5}t.
-\frac{28}{5}t+\frac{9}{25}t^{2}=-8-4
Subtract 4 from both sides.
-\frac{28}{5}t+\frac{9}{25}t^{2}=-12
Subtract 4 from -8 to get -12.
\frac{9}{25}t^{2}-\frac{28}{5}t=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{9}{25}t^{2}-\frac{28}{5}t}{\frac{9}{25}}=-\frac{12}{\frac{9}{25}}
Divide both sides of the equation by \frac{9}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{28}{5}}{\frac{9}{25}}\right)t=-\frac{12}{\frac{9}{25}}
Dividing by \frac{9}{25} undoes the multiplication by \frac{9}{25}.
t^{2}-\frac{140}{9}t=-\frac{12}{\frac{9}{25}}
Divide -\frac{28}{5} by \frac{9}{25} by multiplying -\frac{28}{5} by the reciprocal of \frac{9}{25}.
t^{2}-\frac{140}{9}t=-\frac{100}{3}
Divide -12 by \frac{9}{25} by multiplying -12 by the reciprocal of \frac{9}{25}.
t^{2}-\frac{140}{9}t+\left(-\frac{70}{9}\right)^{2}=-\frac{100}{3}+\left(-\frac{70}{9}\right)^{2}
Divide -\frac{140}{9}, the coefficient of the x term, by 2 to get -\frac{70}{9}. Then add the square of -\frac{70}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{140}{9}t+\frac{4900}{81}=-\frac{100}{3}+\frac{4900}{81}
Square -\frac{70}{9} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{140}{9}t+\frac{4900}{81}=\frac{2200}{81}
Add -\frac{100}{3} to \frac{4900}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{70}{9}\right)^{2}=\frac{2200}{81}
Factor t^{2}-\frac{140}{9}t+\frac{4900}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{70}{9}\right)^{2}}=\sqrt{\frac{2200}{81}}
Take the square root of both sides of the equation.
t-\frac{70}{9}=\frac{10\sqrt{22}}{9} t-\frac{70}{9}=-\frac{10\sqrt{22}}{9}
Simplify.
t=\frac{10\sqrt{22}+70}{9} t=\frac{70-10\sqrt{22}}{9}
Add \frac{70}{9} to both sides of the equation.