Evaluate
\frac{1}{6}\approx 0.166666667
Factor
\frac{1}{2 \cdot 3} = 0.16666666666666666
Share
Copied to clipboard
\frac{2-\frac{2}{2-\frac{1}{\frac{4}{2}-\frac{1}{2}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Convert 2 to fraction \frac{4}{2}.
\frac{2-\frac{2}{2-\frac{1}{\frac{4-1}{2}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2-\frac{2}{2-\frac{1}{\frac{3}{2}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Subtract 1 from 4 to get 3.
\frac{2-\frac{2}{2-1\times \frac{2}{3}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{2-\frac{2}{2-\frac{2}{3}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{2-\frac{2}{\frac{6}{3}-\frac{2}{3}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Convert 2 to fraction \frac{6}{3}.
\frac{2-\frac{2}{\frac{6-2}{3}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2-\frac{2}{\frac{4}{3}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Subtract 2 from 6 to get 4.
\frac{2-2\times \frac{3}{4}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Divide 2 by \frac{4}{3} by multiplying 2 by the reciprocal of \frac{4}{3}.
\frac{2-\frac{2\times 3}{4}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Express 2\times \frac{3}{4} as a single fraction.
\frac{2-\frac{6}{4}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Multiply 2 and 3 to get 6.
\frac{2-\frac{3}{2}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{4}{2}-\frac{3}{2}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{4-3}{2}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Since \frac{4}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{3}}}}
Subtract 3 from 4 to get 1.
\frac{\frac{1}{2}}{1-\frac{1}{1-\frac{1}{\frac{3}{3}-\frac{1}{3}}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{1}{2}}{1-\frac{1}{1-\frac{1}{\frac{3-1}{3}}}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{1-\frac{1}{1-\frac{1}{\frac{2}{3}}}}
Subtract 1 from 3 to get 2.
\frac{\frac{1}{2}}{1-\frac{1}{1-1\times \frac{3}{2}}}
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
\frac{\frac{1}{2}}{1-\frac{1}{1-\frac{3}{2}}}
Multiply 1 and \frac{3}{2} to get \frac{3}{2}.
\frac{\frac{1}{2}}{1-\frac{1}{\frac{2}{2}-\frac{3}{2}}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{1}{2}}{1-\frac{1}{\frac{2-3}{2}}}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{1-\frac{1}{-\frac{1}{2}}}
Subtract 3 from 2 to get -1.
\frac{\frac{1}{2}}{1-1\left(-2\right)}
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
\frac{\frac{1}{2}}{1-\left(-2\right)}
Multiply 1 and -2 to get -2.
\frac{\frac{1}{2}}{1+2}
The opposite of -2 is 2.
\frac{\frac{1}{2}}{3}
Add 1 and 2 to get 3.
\frac{1}{2\times 3}
Express \frac{\frac{1}{2}}{3} as a single fraction.
\frac{1}{6}
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}