Evaluate
\frac{2x}{x+1}
Expand
\frac{2x}{x+1}
Graph
Share
Copied to clipboard
\frac{\left(\frac{2\left(x+1\right)}{x+1}-\frac{1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\left(\frac{2\left(x+1\right)-1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Since \frac{2\left(x+1\right)}{x+1} and \frac{1}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{2x+2-1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Do the multiplications in 2\left(x+1\right)-1.
\frac{\left(\frac{2x+1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Combine like terms in 2x+2-1.
\frac{\left(\frac{\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-1 is \left(x-1\right)\left(x+1\right). Multiply \frac{2x+1}{x+1} times \frac{x-1}{x-1}. Multiply \frac{1}{x-1} times \frac{x+1}{x+1}.
\frac{\frac{\left(2x+1\right)\left(x-1\right)+x+1}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Since \frac{\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x+1}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}-2x-1+x+x+1}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Do the multiplications in \left(2x+1\right)\left(x-1\right)+x+1.
\frac{\frac{2x^{2}}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Combine like terms in 2x^{2}-2x-1+x+x+1.
\frac{\frac{2x^{2}}{\left(x-1\right)\left(x+1\right)}\times \frac{\left(x-5\right)x^{2}}{\left(x-5\right)\left(x+1\right)}}{x-\frac{x}{1-x^{2}}}
Factor the expressions that are not already factored in \frac{x^{3}-5x^{2}}{x^{2}-4x-5}.
\frac{\frac{2x^{2}}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{2}}{x+1}}{x-\frac{x}{1-x^{2}}}
Cancel out x-5 in both numerator and denominator.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{x-\frac{x}{1-x^{2}}}
Multiply \frac{2x^{2}}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{x-\frac{x}{\left(x-1\right)\left(-x-1\right)}}
Factor 1-x^{2}.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{x\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{x}{\left(x-1\right)\left(-x-1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{x\left(x-1\right)\left(-x-1\right)-x}{\left(x-1\right)\left(-x-1\right)}}
Since \frac{x\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{x}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{-x^{3}-x^{2}+x^{2}+x-x}{\left(x-1\right)\left(-x-1\right)}}
Do the multiplications in x\left(x-1\right)\left(-x-1\right)-x.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{-x^{3}}{\left(x-1\right)\left(-x-1\right)}}
Combine like terms in -x^{3}-x^{2}+x^{2}+x-x.
\frac{2x^{2}x^{2}\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(-1\right)x^{3}}
Divide \frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)} by \frac{-x^{3}}{\left(x-1\right)\left(-x-1\right)} by multiplying \frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)} by the reciprocal of \frac{-x^{3}}{\left(x-1\right)\left(-x-1\right)}.
\frac{-2\left(x-1\right)\left(x+1\right)x^{2}x^{2}}{-\left(x-1\right)\left(x+1\right)\left(x+1\right)x^{3}}
Extract the negative sign in -x-1.
\frac{2x}{x+1}
Cancel out -x\left(x-1\right)\left(x+1\right)x^{2} in both numerator and denominator.
\frac{\left(\frac{2\left(x+1\right)}{x+1}-\frac{1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\left(\frac{2\left(x+1\right)-1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Since \frac{2\left(x+1\right)}{x+1} and \frac{1}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{2x+2-1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Do the multiplications in 2\left(x+1\right)-1.
\frac{\left(\frac{2x+1}{x+1}+\frac{1}{x-1}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Combine like terms in 2x+2-1.
\frac{\left(\frac{\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}\right)\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-1 is \left(x-1\right)\left(x+1\right). Multiply \frac{2x+1}{x+1} times \frac{x-1}{x-1}. Multiply \frac{1}{x-1} times \frac{x+1}{x+1}.
\frac{\frac{\left(2x+1\right)\left(x-1\right)+x+1}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Since \frac{\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x+1}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}-2x-1+x+x+1}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Do the multiplications in \left(2x+1\right)\left(x-1\right)+x+1.
\frac{\frac{2x^{2}}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{3}-5x^{2}}{x^{2}-4x-5}}{x-\frac{x}{1-x^{2}}}
Combine like terms in 2x^{2}-2x-1+x+x+1.
\frac{\frac{2x^{2}}{\left(x-1\right)\left(x+1\right)}\times \frac{\left(x-5\right)x^{2}}{\left(x-5\right)\left(x+1\right)}}{x-\frac{x}{1-x^{2}}}
Factor the expressions that are not already factored in \frac{x^{3}-5x^{2}}{x^{2}-4x-5}.
\frac{\frac{2x^{2}}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{2}}{x+1}}{x-\frac{x}{1-x^{2}}}
Cancel out x-5 in both numerator and denominator.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{x-\frac{x}{1-x^{2}}}
Multiply \frac{2x^{2}}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{x-\frac{x}{\left(x-1\right)\left(-x-1\right)}}
Factor 1-x^{2}.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{x\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}-\frac{x}{\left(x-1\right)\left(-x-1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)}.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{x\left(x-1\right)\left(-x-1\right)-x}{\left(x-1\right)\left(-x-1\right)}}
Since \frac{x\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-1\right)} and \frac{x}{\left(x-1\right)\left(-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{-x^{3}-x^{2}+x^{2}+x-x}{\left(x-1\right)\left(-x-1\right)}}
Do the multiplications in x\left(x-1\right)\left(-x-1\right)-x.
\frac{\frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}}{\frac{-x^{3}}{\left(x-1\right)\left(-x-1\right)}}
Combine like terms in -x^{3}-x^{2}+x^{2}+x-x.
\frac{2x^{2}x^{2}\left(x-1\right)\left(-x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(-1\right)x^{3}}
Divide \frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)} by \frac{-x^{3}}{\left(x-1\right)\left(-x-1\right)} by multiplying \frac{2x^{2}x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+1\right)} by the reciprocal of \frac{-x^{3}}{\left(x-1\right)\left(-x-1\right)}.
\frac{-2\left(x-1\right)\left(x+1\right)x^{2}x^{2}}{-\left(x-1\right)\left(x+1\right)\left(x+1\right)x^{3}}
Extract the negative sign in -x-1.
\frac{2x}{x+1}
Cancel out -x\left(x-1\right)\left(x+1\right)x^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}