Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

4-2t+\frac{1}{4}t^{2}+\left(-1+\frac{1}{2}t\right)^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\frac{1}{2}t\right)^{2}.
4-2t+\frac{1}{4}t^{2}+1-t+\frac{1}{4}t^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+\frac{1}{2}t\right)^{2}.
5-2t+\frac{1}{4}t^{2}-t+\frac{1}{4}t^{2}=4
Add 4 and 1 to get 5.
5-3t+\frac{1}{4}t^{2}+\frac{1}{4}t^{2}=4
Combine -2t and -t to get -3t.
5-3t+\frac{1}{2}t^{2}=4
Combine \frac{1}{4}t^{2} and \frac{1}{4}t^{2} to get \frac{1}{2}t^{2}.
5-3t+\frac{1}{2}t^{2}-4=0
Subtract 4 from both sides.
1-3t+\frac{1}{2}t^{2}=0
Subtract 4 from 5 to get 1.
\frac{1}{2}t^{2}-3t+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{1}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{1}{2}}}{2\times \frac{1}{2}}
Square -3.
t=\frac{-\left(-3\right)±\sqrt{9-2}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
t=\frac{-\left(-3\right)±\sqrt{7}}{2\times \frac{1}{2}}
Add 9 to -2.
t=\frac{3±\sqrt{7}}{2\times \frac{1}{2}}
The opposite of -3 is 3.
t=\frac{3±\sqrt{7}}{1}
Multiply 2 times \frac{1}{2}.
t=\frac{\sqrt{7}+3}{1}
Now solve the equation t=\frac{3±\sqrt{7}}{1} when ± is plus. Add 3 to \sqrt{7}.
t=\sqrt{7}+3
Divide 3+\sqrt{7} by 1.
t=\frac{3-\sqrt{7}}{1}
Now solve the equation t=\frac{3±\sqrt{7}}{1} when ± is minus. Subtract \sqrt{7} from 3.
t=3-\sqrt{7}
Divide 3-\sqrt{7} by 1.
t=\sqrt{7}+3 t=3-\sqrt{7}
The equation is now solved.
4-2t+\frac{1}{4}t^{2}+\left(-1+\frac{1}{2}t\right)^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\frac{1}{2}t\right)^{2}.
4-2t+\frac{1}{4}t^{2}+1-t+\frac{1}{4}t^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+\frac{1}{2}t\right)^{2}.
5-2t+\frac{1}{4}t^{2}-t+\frac{1}{4}t^{2}=4
Add 4 and 1 to get 5.
5-3t+\frac{1}{4}t^{2}+\frac{1}{4}t^{2}=4
Combine -2t and -t to get -3t.
5-3t+\frac{1}{2}t^{2}=4
Combine \frac{1}{4}t^{2} and \frac{1}{4}t^{2} to get \frac{1}{2}t^{2}.
-3t+\frac{1}{2}t^{2}=4-5
Subtract 5 from both sides.
-3t+\frac{1}{2}t^{2}=-1
Subtract 5 from 4 to get -1.
\frac{1}{2}t^{2}-3t=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}t^{2}-3t}{\frac{1}{2}}=-\frac{1}{\frac{1}{2}}
Multiply both sides by 2.
t^{2}+\left(-\frac{3}{\frac{1}{2}}\right)t=-\frac{1}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
t^{2}-6t=-\frac{1}{\frac{1}{2}}
Divide -3 by \frac{1}{2} by multiplying -3 by the reciprocal of \frac{1}{2}.
t^{2}-6t=-2
Divide -1 by \frac{1}{2} by multiplying -1 by the reciprocal of \frac{1}{2}.
t^{2}-6t+\left(-3\right)^{2}=-2+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=-2+9
Square -3.
t^{2}-6t+9=7
Add -2 to 9.
\left(t-3\right)^{2}=7
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
t-3=\sqrt{7} t-3=-\sqrt{7}
Simplify.
t=\sqrt{7}+3 t=3-\sqrt{7}
Add 3 to both sides of the equation.