Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(2x-1\right)^{2}=36
Multiply 2 and 4 to get 8.
8\left(4x^{2}-4x+1\right)=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
32x^{2}-32x+8=36
Use the distributive property to multiply 8 by 4x^{2}-4x+1.
32x^{2}-32x+8-36=0
Subtract 36 from both sides.
32x^{2}-32x-28=0
Subtract 36 from 8 to get -28.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 32\left(-28\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, -32 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 32\left(-28\right)}}{2\times 32}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-128\left(-28\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{-\left(-32\right)±\sqrt{1024+3584}}{2\times 32}
Multiply -128 times -28.
x=\frac{-\left(-32\right)±\sqrt{4608}}{2\times 32}
Add 1024 to 3584.
x=\frac{-\left(-32\right)±48\sqrt{2}}{2\times 32}
Take the square root of 4608.
x=\frac{32±48\sqrt{2}}{2\times 32}
The opposite of -32 is 32.
x=\frac{32±48\sqrt{2}}{64}
Multiply 2 times 32.
x=\frac{48\sqrt{2}+32}{64}
Now solve the equation x=\frac{32±48\sqrt{2}}{64} when ± is plus. Add 32 to 48\sqrt{2}.
x=\frac{3\sqrt{2}}{4}+\frac{1}{2}
Divide 32+48\sqrt{2} by 64.
x=\frac{32-48\sqrt{2}}{64}
Now solve the equation x=\frac{32±48\sqrt{2}}{64} when ± is minus. Subtract 48\sqrt{2} from 32.
x=-\frac{3\sqrt{2}}{4}+\frac{1}{2}
Divide 32-48\sqrt{2} by 64.
x=\frac{3\sqrt{2}}{4}+\frac{1}{2} x=-\frac{3\sqrt{2}}{4}+\frac{1}{2}
The equation is now solved.
8\left(2x-1\right)^{2}=36
Multiply 2 and 4 to get 8.
8\left(4x^{2}-4x+1\right)=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
32x^{2}-32x+8=36
Use the distributive property to multiply 8 by 4x^{2}-4x+1.
32x^{2}-32x=36-8
Subtract 8 from both sides.
32x^{2}-32x=28
Subtract 8 from 36 to get 28.
\frac{32x^{2}-32x}{32}=\frac{28}{32}
Divide both sides by 32.
x^{2}+\left(-\frac{32}{32}\right)x=\frac{28}{32}
Dividing by 32 undoes the multiplication by 32.
x^{2}-x=\frac{28}{32}
Divide -32 by 32.
x^{2}-x=\frac{7}{8}
Reduce the fraction \frac{28}{32} to lowest terms by extracting and canceling out 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{7}{8}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{7}{8}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{9}{8}
Add \frac{7}{8} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{8}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{8}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{3\sqrt{2}}{4} x-\frac{1}{2}=-\frac{3\sqrt{2}}{4}
Simplify.
x=\frac{3\sqrt{2}}{4}+\frac{1}{2} x=-\frac{3\sqrt{2}}{4}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.