Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-6x-2=0
Multiply 2 and 3 to get 6.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6\left(-2\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6\left(-2\right)}}{2\times 6}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-24\left(-2\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-6\right)±\sqrt{36+48}}{2\times 6}
Multiply -24 times -2.
x=\frac{-\left(-6\right)±\sqrt{84}}{2\times 6}
Add 36 to 48.
x=\frac{-\left(-6\right)±2\sqrt{21}}{2\times 6}
Take the square root of 84.
x=\frac{6±2\sqrt{21}}{2\times 6}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{21}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{21}+6}{12}
Now solve the equation x=\frac{6±2\sqrt{21}}{12} when ± is plus. Add 6 to 2\sqrt{21}.
x=\frac{\sqrt{21}}{6}+\frac{1}{2}
Divide 6+2\sqrt{21} by 12.
x=\frac{6-2\sqrt{21}}{12}
Now solve the equation x=\frac{6±2\sqrt{21}}{12} when ± is minus. Subtract 2\sqrt{21} from 6.
x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
Divide 6-2\sqrt{21} by 12.
x=\frac{\sqrt{21}}{6}+\frac{1}{2} x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
The equation is now solved.
6x^{2}-6x-2=0
Multiply 2 and 3 to get 6.
6x^{2}-6x=2
Add 2 to both sides. Anything plus zero gives itself.
\frac{6x^{2}-6x}{6}=\frac{2}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{6}{6}\right)x=\frac{2}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-x=\frac{2}{6}
Divide -6 by 6.
x^{2}-x=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{7}{12}
Add \frac{1}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{12}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{21}}{6} x-\frac{1}{2}=-\frac{\sqrt{21}}{6}
Simplify.
x=\frac{\sqrt{21}}{6}+\frac{1}{2} x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.